Sequence Spaces and Summability over Valued Fields

Sequence Spaces and Summability over Valued Fields

Author: P. N. Natarajan

Publisher: CRC Press

Published: 2019-07-09

Total Pages: 169

ISBN-13: 1000074919

DOWNLOAD EBOOK

Sequence spaces and summability over valued fields is a research book aimed at research scholars, graduate students and teachers with an interest in Summability Theory both Classical (Archimedean) and Ultrametric (non-Archimedean). The book presents theory and methods in the chosen topic, spread over 8 chapters that seem to be important at research level in a still developing topic. Key Features Presented in a self-contained manner Provides examples and counterexamples in the relevant contexts Provides extensive references at the end of each chapter to enable the reader to do further research in the topic Presented in the same book, a comparative study of Archimedean and non-Archimedean Summability Theory Appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory The book is written by a very experienced educator and researcher in Mathematical Analysis particularly Summability Theory.


Nonarchimedean Functional Analysis

Nonarchimedean Functional Analysis

Author: Peter Schneider

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 159

ISBN-13: 3662047284

DOWNLOAD EBOOK

This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.


Advances in Non-Archimedean Analysis

Advances in Non-Archimedean Analysis

Author: Jesus Araujo-Gomez

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 294

ISBN-13: 0821852914

DOWNLOAD EBOOK

These collected articles feature recent developments in various areas of non-Archimedean analysis: Hilbert and Banach spaces, finite dimensional spaces, topological vector spaces and operator theory, strict topologies, spaces of continuous functions and of strictly differentiable functions, isomorphisms between Banach functions spaces, and measure and integration.


Advances in $p$-adic and Non-Archimedean Analysis

Advances in $p$-adic and Non-Archimedean Analysis

Author: M. Berz

Publisher: American Mathematical Soc.

Published: 2010-02-17

Total Pages: 281

ISBN-13: 0821847406

DOWNLOAD EBOOK

This volume contains the proceedings of the Tenth International Conference on $p$-adic and Non-Archimedean Analysis, held at Michigan State University in East Lansing, Michigan, on June 30-July 3, 2008. This volume contains a kaleidoscope of papers based on several of the more important talks presented at the meeting. It provides a cutting-edge connection to some of the most important recent developments in the field. Through a combination of survey papers, research articles, and extensive references to earlier work, this volume allows the reader to quickly gain an overview of current activity in the field and become acquainted with many of the recent sub-branches of its development.


Advances in Non-Archimedean Analysis

Advances in Non-Archimedean Analysis

Author: Helge Glöckner

Publisher: American Mathematical Soc.

Published: 2016-05-20

Total Pages: 346

ISBN-13: 1470419882

DOWNLOAD EBOOK

This volume contains the Proceedings of the 13th International Conference on p-adic Functional Analysis, held from August 12–16, 2014, at the University of Paderborn, Paderborn, Germany. The articles included in this book feature recent developments in various areas of non-Archimedean analysis, non-Archimedean functional analysis, representation theory, number theory, non-Archimedean dynamical systems and applications. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.


Ultrametric Functional Analysis

Ultrametric Functional Analysis

Author: Wilhelmus Hendricus Schikhof

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 434

ISBN-13: 0821833200

DOWNLOAD EBOOK

This volume contains research articles based on lectures given at the Seventh International Conference on $p$-adic Functional Analysis. The articles, written by leading international experts, provide a complete overview of the latest contributions in basic functional analysis (Hilbert and Banach spaces, locally convex spaces, orthogonality, inductive limits, spaces of continuous functions, strict topologies, operator theory, automatic continuity, measure and integrations, Banach and topological algebras, summability methods, and ultrametric spaces), analytic functions (meromorphic functions, roots of rational functions, characterization of injective holomorphic functions, and Gelfand transforms in algebras of analytic functions), differential equations, Banach-Hopf algebras, Cauchy theory of Levi-Civita fields, finite differences, weighted means, $p$-adic dynamical systems, and non-Archimedean probability theory and stochastic processes. The book is written for graduate students and research mathematicians. It also would make a good reference source for those in related areas, such as classical functional analysis, complex analytic functions, probability theory, dynamical systems, orthomodular spaces, number theory, and representations of $p$-adic groups.


Locally Convex Spaces over Non-Archimedean Valued Fields

Locally Convex Spaces over Non-Archimedean Valued Fields

Author: C. Perez-Garcia

Publisher: Cambridge University Press

Published: 2010-01-07

Total Pages: 486

ISBN-13: 9780521192439

DOWNLOAD EBOOK

Non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers are fundamental, is a fast-growing discipline widely used not just within pure mathematics, but also applied in other sciences, including physics, biology and chemistry. This book is the first to provide a comprehensive treatment of non-Archimedean locally convex spaces. The authors provide a clear exposition of the basic theory, together with complete proofs and new results from the latest research. A guide to the many illustrative examples provided, end-of-chapter notes and glossary of terms all make this book easily accessible to beginners at the graduate level, as well as specialists from a variety of disciplines.


An Introduction to Ultrametric Summability Theory

An Introduction to Ultrametric Summability Theory

Author: P.N. Natarajan

Publisher: Springer Science & Business Media

Published: 2013-10-18

Total Pages: 111

ISBN-13: 8132216474

DOWNLOAD EBOOK

Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents, for the first time, a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis.


Advances in Non-Archimedean Analysis and Applications

Advances in Non-Archimedean Analysis and Applications

Author: W. A. Zúñiga-Galindo

Publisher: Springer Nature

Published: 2021-12-02

Total Pages: 326

ISBN-13: 3030819760

DOWNLOAD EBOOK

This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance, proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.


p-adic Functional Analysis

p-adic Functional Analysis

Author: W.H. Schikhof

Publisher: CRC Press

Published: 2020-11-26

Total Pages: 419

ISBN-13: 1000145913

DOWNLOAD EBOOK

"Contains research articles by nearly 40 leading mathematicians from North and South America, Europe, Africa, and Asia, presented at the Fourth International Conference on p-adic Functional Analysis held recently in Nijmegen, The Netherlands. Includes numerous new open problems documented with extensive comments and references."