Synthesizing coverage of sensation and reward into a comprehensive systems overview, Neurobiology of Sensation and Reward presents a cutting-edge and multidisciplinary approach to the interplay of sensory and reward processing in the brain. While over the past 70 years these areas have drifted apart, this book makes a case for reuniting sensation a
The essays in this edited volume are written by neuroscientists distinguished for their research into the neurobiology of mammalian sensory processing. Covering a wide range of current experimental approaches to the investigation of the mammalian brain, the contributors address the nature of the central neural representation of the major sensory systems--taste, smell, hearing, sight, pain, and touch. Comparisons of their experimental rationales, methods of approach, and of the resulting data, demonstrate the commonality of many features of neural organization between the different sensory systems explored. Among the features discussed in detail are the import of elaborately structured maps of sensory function in the cerebral cortex, the degree of anatomical and physiological separation of different aspects of the input within single sensory systems, the nature of neuron assemblies responsible for complex analytic events, and the relation between metabolic patterns of activity and physiological recording of response properties. The importance of theoretical models, new imaging techniques, and investigations using neural transplants for experimental analysis of sensory systems are demonstrated and the influence of the concepts of cognitive psychology on experimental investigations of sensory processing is discussed. A series of commentaries links the book's different sections, indicating for the reader those aspects of the experimental findings that are of particular importance to an understanding of the field as a whole.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
The major reference work for a rapidly advancing field synthesizes central themes, reports on current findings, and offers a blueprint for future research. Scientists' attempts to understand the physiology underlying our apprehension of the physical world was long dominated by a focus on the individual senses. The 1980s saw the beginning of systematic efforts to examine interactions among different sensory modalities at the level of the single neuron. And by the end of the 1990s, a recognizable and multidisciplinary field of "multisensory processes" had emerged. More recently, studies involving both human and nonhuman subjects have focused on relationships among multisensory neuronal ensembles and their behavioral, perceptual, and cognitive correlates. The New Handbook of Multisensory Processing synthesizes the central themes in this rapidly developing area, reports on current findings, and offers a blueprint for future research. The contributions, all of them written for this volume by leading experts, reflect the evolution and current state of the field. This handbook does more than simply review the field. Each of the volume's eleven sections broadly surveys a major topic, and each begins with a substantive and thought-provoking commentary by the section editor that identifies the major issues being explored, describes their treatment in the chapters that follow, and sets these findings within the context of the existing body of knowledge. Together, the commentaries and chapters provide an invaluable guide to areas of general agreement, unresolved issues, and topics that remain to be explored in this fast-moving field.
Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely
Many advances have been made in the last decade in the understanding of the computational principles underlying olfactory system functioning. Neuromorphic Olfaction is a collaboration among European researchers who, through NEUROCHEM (Fp7-Grant Agreement Number 216916)-a challenging and innovative European-funded project-introduce novel computing p
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.