This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.
This textbook provides a comprehensive introduction to the theories and techniques of multi-sensor data fusion. It is aimed at advanced undergraduate and first-year graduate students in electrical engineering and computer science, as well as researchers and professional engineers. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familiarity with the basic tools of linear algebra, calculus and simple probability theory is recommended.
Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing the prerequisites for discussing selected applications in Part II of the book. The presentation mirrors the author's views on the subject and emphasizes his own contributions to the development of particular aspects. With some delay, Sensor Data Fusion is likely to develop along lines similar to the evolution of another modern key technology whose origin is in the military domain, the Internet. It is the author's firm conviction that until now, scientists and engineers have only scratched the surface of the vast range of opportunities for research, engineering, and product development that still waits to be explored: the Internet of the Sensors.
Using MATLAB examples wherever possible, Multi-Sensor Data Fusion with MATLAB explores the three levels of multi-sensor data fusion (MSDF): kinematic-level fusion, including the theory of DF; fuzzy logic and decision fusion; and pixel- and feature-level image fusion. The authors elucidate DF strategies, algorithms, and performance evaluation mainly
This textbook provides a comprehensive introduction to the concepts and idea of multisensor data fusion. It is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction" which was originally published by Springer-Verlag in 2007. The main changes in the new book are: New Material: Apart from one new chapter there are approximately 30 new sections, 50 new examples and 100 new references. At the same time, material which is out-of-date has been eliminated and the remaining text has been rewritten for added clarity. Altogether, the new book is nearly 70 pages longer than the original book. Matlab code: Where appropriate we have given details of Matlab code which may be downloaded from the worldwide web. In a few places, where such code is not readily available, we have included Matlab code in the body of the text. Layout. The layout and typography has been revised. Examples and Matlab code now appear on a gray background for easy identification and advancd material is marked with an asterisk. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familarity with the basic tools of linear algebra, calculus and simple probability is recommended. Although conceptually simple, the study of mult-sensor data fusion presents challenges that are unique within the education of the electrical engineer or computer scientist. To become competent in the field the student must become familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory. All too often, the student views multi-sensor data fusion as a miscellaneous assortment of different processes which bear no relationship to each other. In contrast, in this book the processes are unified by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references.
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.
This book introduces resource-aware data fusion algorithms to gather and combine data from multiple sources (e.g., sensors) in order to achieve inferences. These techniques can be used in centralized and distributed systems to overcome sensor failure, technological limitation, and spatial and temporal coverage problems. The algorithms described in this book are evaluated with simulation and experimental results to show they will maintain data integrity and make data useful and informative. Describes techniques to overcome real problems posed by wireless sensor networks deployed in circumstances that might interfere with measurements provided, such as strong variations of pressure, temperature, radiation, and electromagnetic noise; Uses simulation and experimental results to evaluate algorithms presented and includes real test-bed; Includes case study implementing data fusion algorithms on a remote monitoring framework for sand production in oil pipelines.
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.