Atmospheric Rivers

Atmospheric Rivers

Author: F. Martin Ralph

Publisher: Springer Nature

Published: 2020-07-10

Total Pages: 284

ISBN-13: 3030289060

DOWNLOAD EBOOK

This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.


Confronting Climate Uncertainty in Water Resources Planning and Project Design

Confronting Climate Uncertainty in Water Resources Planning and Project Design

Author: Patrick A. Ray

Publisher: World Bank Publications

Published: 2015-08-20

Total Pages: 149

ISBN-13: 1464804788

DOWNLOAD EBOOK

Confronting Climate Uncertainty in Water Resources Planning and Project Design describes an approach to facing two fundamental and unavoidable issues brought about by climate change uncertainty in water resources planning and project design. The first is a risk assessment problem. The second relates to risk management. This book provides background on the risks relevant in water systems planning, the different approaches to scenario definition in water system planning, and an introduction to the decision-scaling methodology upon which the decision tree is based. The decision tree is described as a scientifically defensible, repeatable, direct and clear method for demonstrating the robustness of a project to climate change. While applicable to all water resources projects, it allocates effort to projects in a way that is consistent with their potential sensitivity to climate risk. The process was designed to be hierarchical, with different stages or phases of analysis triggered based on the findings of the previous phase. An application example is provided followed by a descriptions of some of the tools available for decision making under uncertainty and methods available for climate risk management. The tool was designed for the World Bank but can be applicable in other scenarios where similar challenges arise.