Robust Optimization

Robust Optimization

Author: Aharon Ben-Tal

Publisher: Princeton University Press

Published: 2009-08-10

Total Pages: 565

ISBN-13: 1400831059

DOWNLOAD EBOOK

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.


Advances in Sensitivity Analysis and Parametric Programming

Advances in Sensitivity Analysis and Parametric Programming

Author: Tomas Gal

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 595

ISBN-13: 1461561035

DOWNLOAD EBOOK

The standard view of Operations Research/Management Science (OR/MS) dichotomizes the field into deterministic and probabilistic (nondeterministic, stochastic) subfields. This division can be seen by reading the contents page of just about any OR/MS textbook. The mathematical models that help to define OR/MS are usually presented in terms of one subfield or the other. This separation comes about somewhat artificially: academic courses are conveniently subdivided with respect to prerequisites; an initial overview of OR/MS can be presented without requiring knowledge of probability and statistics; text books are conveniently divided into two related semester courses, with deterministic models coming first; academics tend to specialize in one subfield or the other; and practitioners also tend to be expert in a single subfield. But, no matter who is involved in an OR/MS modeling situation (deterministic or probabilistic - academic or practitioner), it is clear that a proper and correct treatment of any problem situation is accomplished only when the analysis cuts across this dichotomy.


Global Sensitivity Analysis

Global Sensitivity Analysis

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 304

ISBN-13: 9780470725177

DOWNLOAD EBOOK

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.


Computational Optimal Transport

Computational Optimal Transport

Author: Gabriel Peyre

Publisher: Foundations and Trends(r) in M

Published: 2019-02-12

Total Pages: 272

ISBN-13: 9781680835502

DOWNLOAD EBOOK

The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.


A Course in Robust Control Theory

A Course in Robust Control Theory

Author: Geir E. Dullerud

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 427

ISBN-13: 1475732902

DOWNLOAD EBOOK

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.


Linear Programming

Linear Programming

Author: Saul I. Gass

Publisher: Courier Corporation

Published: 2003-01-01

Total Pages: 545

ISBN-13: 048643284X

DOWNLOAD EBOOK

Comprehensive, well-organized volume, suitable for undergraduates, covers theoretical, computational, and applied areas in linear programming. Expanded, updated edition; useful both as a text and as a reference book. 1995 edition.


Sensitivity Analysis in Practice

Sensitivity Analysis in Practice

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2004-07-16

Total Pages: 232

ISBN-13: 047087094X

DOWNLOAD EBOOK

Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.


Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records

Author: MIT Critical Data

Publisher: Springer

Published: 2016-09-09

Total Pages: 435

ISBN-13: 3319437429

DOWNLOAD EBOOK

This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.


Structural Information and Communication Complexity

Structural Information and Communication Complexity

Author: Shay Kutten

Publisher: Springer Science & Business Media

Published: 2010-02-12

Total Pages: 350

ISBN-13: 364211475X

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-conference proceedings of the 16th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2009, held in Piran, Slovenia, in May 2009. The 23 revised full papers presented were carefully reviewed and selected from 53 submissions. The volume also contains two invited papers. SIROCCO addresses topics such as distributed computing, parallel computing, game theory, social networks, networking, mobile computing, peer to peer systems, communication complexity, combinatorial optimization; special focus is put to compact data structures, information dissemination, informative labeling schemes, distributed scheduling, wireless networks and scheduling of transmissions, routing, broadcasting, and localization.