Numerical Methods in Sensitivity Analysis and Shape Optimization

Numerical Methods in Sensitivity Analysis and Shape Optimization

Author: Emmanuel Laporte

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 202

ISBN-13: 1461200695

DOWNLOAD EBOOK

Sensitivity analysis and optimal shape design are key issues in engineering that have been affected by advances in numerical tools currently available. This book, and its supplementary online files, presents basic optimization techniques that can be used to compute the sensitivity of a given design to local change, or to improve its performance by local optimization of these data. The relevance and scope of these techniques have improved dramatically in recent years because of progress in discretization strategies, optimization algorithms, automatic differentiation, software availability, and the power of personal computers. Numerical Methods in Sensitivity Analysis and Shape Optimization will be of interest to graduate students involved in mathematical modeling and simulation, as well as engineers and researchers in applied mathematics looking for an up-to-date introduction to optimization techniques, sensitivity analysis, and optimal design.


Structural Sensitivity Analysis and Optimization 2

Structural Sensitivity Analysis and Optimization 2

Author: K. K. Choi

Publisher: Springer Science & Business Media

Published: 2006-12-22

Total Pages: 336

ISBN-13: 0387273069

DOWNLOAD EBOOK

Extensive numerical methods for computing design sensitivity are included in the text for practical application and software development. The numerical method allows integration of CAD-FEA-DSA software tools, so that design optimization can be carried out using CAD geometric models instead of FEA models. This capability allows integration of CAD-CAE-CAM so that optimized designs can be manufactured effectively.


Structural Sensitivity Analysis and Optimization 1

Structural Sensitivity Analysis and Optimization 1

Author: Kyung K. Choi

Publisher: Springer Science & Business Media

Published: 2006-12-30

Total Pages: 457

ISBN-13: 0387271694

DOWNLOAD EBOOK

Extensive numerical methods for computing design sensitivity are included in the text for practical application and software development. The numerical method allows integration of CAD-FEA-DSA software tools, so that design optimization can be carried out using CAD geometric models instead of FEA models. This capability allows integration of CAD-CAE-CAM so that optimized designs can be manufactured effectively.


Numerical Methods and Optimization

Numerical Methods and Optimization

Author: Sergiy Butenko

Publisher: CRC Press

Published: 2014-03-11

Total Pages: 408

ISBN-13: 1466577789

DOWNLOAD EBOOK

For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro


Online Optimization of Large Scale Systems

Online Optimization of Large Scale Systems

Author: Martin Grötschel

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 789

ISBN-13: 3662043319

DOWNLOAD EBOOK

In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.


Numerical Methods and Optimization

Numerical Methods and Optimization

Author: Jean-Pierre Corriou

Publisher: Springer Nature

Published: 2022-01-04

Total Pages: 730

ISBN-13: 3030893669

DOWNLOAD EBOOK

This text, covering a very large span of numerical methods and optimization, is primarily aimed at advanced undergraduate and graduate students. A background in calculus and linear algebra are the only mathematical requirements. The abundance of advanced methods and practical applications will be attractive to scientists and researchers working in different branches of engineering. The reader is progressively introduced to general numerical methods and optimization algorithms in each chapter. Examples accompany the various methods and guide the students to a better understanding of the applications. The user is often provided with the opportunity to verify their results with complex programming code. Each chapter ends with graduated exercises which furnish the student with new cases to study as well as ideas for exam/homework problems for the instructor. A set of programs made in MatlabTM is available on the author’s personal website and presents both numerical and optimization methods.


Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Author: J. E. Dennis, Jr.

Publisher: SIAM

Published: 1996-12-01

Total Pages: 394

ISBN-13: 9781611971200

DOWNLOAD EBOOK

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.


Sensitivity Analysis in Linear Systems

Sensitivity Analysis in Linear Systems

Author: Assem Deif

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 235

ISBN-13: 364282739X

DOWNLOAD EBOOK

A text surveying perturbation techniques and sensitivity analysis of linear systems is an ambitious undertaking, considering the lack of basic comprehensive texts on the subject. A wide-ranging and global coverage of the topic is as yet missing, despite the existence of numerous monographs dealing with specific topics but generally of use to only a narrow category of people. In fact, most works approach this subject from the numerical analysis point of view. Indeed, researchers in this field have been most concerned with this topic, although engineers and scholars in all fields may find it equally interesting. One can state, without great exaggeration, that a great deal of engineering work is devoted to testing systems' sensitivity to changes in design parameters. As a rule, high-sensitivity elements are those which should be designed with utmost care. On the other hand, as the mathematical modelling serving for the design process is usually idealized and often inaccurately formulated, some unforeseen alterations may cause the system to behave in a slightly different manner. Sensitivity analysis can help the engineer innovate ways to minimize such system discrepancy, since it starts from the assumption of such a discrepancy between the ideal and the actual system.


Global Sensitivity Analysis

Global Sensitivity Analysis

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 304

ISBN-13: 9780470725177

DOWNLOAD EBOOK

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.


Introduction to Shape Optimization

Introduction to Shape Optimization

Author: Jan Sokolowski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 3642581064

DOWNLOAD EBOOK

This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.