Semiconductor Devices

Semiconductor Devices

Author: James Fiore

Publisher:

Published: 2017-05-11

Total Pages: 407

ISBN-13: 9781796543537

DOWNLOAD EBOOK

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.


Semiconductor Physical Electronics

Semiconductor Physical Electronics

Author: Sheng S. Li

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 514

ISBN-13: 146130489X

DOWNLOAD EBOOK

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.


Semiconductor Physics and Devices

Semiconductor Physics and Devices

Author: Donald A. Neamen

Publisher:

Published: 2003

Total Pages: 746

ISBN-13: 9780071198622

DOWNLOAD EBOOK

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.


Semiconductors and Modern Electronics

Semiconductors and Modern Electronics

Author: Chuck Winrich

Publisher: Morgan & Claypool Publishers

Published: 2019-11-08

Total Pages: 59

ISBN-13: 1643275909

DOWNLOAD EBOOK

Semiconductors and Modern Electronics is a brief introduction to the physics behind semiconductor technologies. Chuck Winrich, a physics professor at Babson College, explores the topic of semiconductors from a qualitative approach to understanding the theories and models used to explain semiconductor devices. Applications of semiconductors are explored and understood through the models developed in the book. The qualitative approach in this book is intended to bring the advanced ideas behind semiconductors to the broader audience of students who will not major in physics. Much of the inspiration for this book comes from Dr. Winrich's experience teaching a general electronics course to students majoring in business. The goal of that class, and this book, is to bring forward the science behind semiconductors, and then to look at how that science affects the lives of people.


Physics of Semiconductor Devices

Physics of Semiconductor Devices

Author: Simon M. Sze

Publisher: John Wiley & Sons

Published: 2006-12-13

Total Pages: 828

ISBN-13: 0470068302

DOWNLOAD EBOOK

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.


Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices

Author: B. Jayant Baliga

Publisher: Springer

Published: 2018-09-28

Total Pages: 1114

ISBN-13: 3319939882

DOWNLOAD EBOOK

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.


Complete Guide to Semiconductor Devices

Complete Guide to Semiconductor Devices

Author: Kwok K. Ng

Publisher: Wiley-IEEE Press

Published: 2002-07-25

Total Pages: 768

ISBN-13: 9780471202400

DOWNLOAD EBOOK

A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.


Semiconductor Technologies in the Era of Electronics

Semiconductor Technologies in the Era of Electronics

Author: Yong Hoon Kang

Publisher: Springer

Published: 2016-09-03

Total Pages: 0

ISBN-13: 9789401779166

DOWNLOAD EBOOK

Technological advances in the field of materials, devices, circuits, and systems began by the discovery of new properties of objects, or the entrepreneurship with the applications of unique or practical concepts for commercial goods. To implement products using these findings and challenges textbook knowledge is usually sufficient. Semiconductor Technologies in the Era of Electronics therefore does not aim to look deeper in certain areas but it offers a broad and comprehensive overview of the field to: - Experts of specific knowledge who want to expand the overall understanding to different areas - Persons who wish to understand the principle of electronic devices often seen in everyday life - Entrepreneurs interested in the innovations and changes of semiconductor technologies and overall electronics industry A profound and theoretical approach is therefore used and special cases essential to understanding these important concept are presented.


2D Semiconductor Materials and Devices

2D Semiconductor Materials and Devices

Author: Dongzhi Chi

Publisher: Elsevier

Published: 2019-10-19

Total Pages: 339

ISBN-13: 0128165898

DOWNLOAD EBOOK

2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. - Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors - Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications - Features contributions from the leading experts in the field


Electronic Properties of Doped Semiconductors

Electronic Properties of Doped Semiconductors

Author: B.I. Shklovskii

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 400

ISBN-13: 3662024039

DOWNLOAD EBOOK

First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.