Self-Organization of Complex Structures

Self-Organization of Complex Structures

Author: Frank Schweitzer

Publisher: CRC Press

Published: 1997-07-16

Total Pages: 624

ISBN-13: 9789056990275

DOWNLOAD EBOOK

During the past twenty years, a broad spectrum of theories and methods have been developed in physics, chemistry and molecular biology to explain structure formation in complex systems. These methods have been applied to many different fields such as economics, sociology and town planning, and this book reflects the interdisciplinary nature of complexity and self-organisation. The main focus is on the emergence of collective phenomena from individual or microscopic interactions. Presents a wide-ranging overview from fundamental aspects of the evolution of complexity, to applications in biology, ecology, sociology, economics, and urban structure formation.


Self-Organization in Biological Systems

Self-Organization in Biological Systems

Author: Scott Camazine

Publisher: Princeton University Press

Published: 2020-05-05

Total Pages: 548

ISBN-13: 0691212929

DOWNLOAD EBOOK

The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.


Self-Organization in Complex Ecosystems. (MPB-42)

Self-Organization in Complex Ecosystems. (MPB-42)

Author: Ricard Solé

Publisher: Princeton University Press

Published: 2012-01-06

Total Pages: 384

ISBN-13: 140084293X

DOWNLOAD EBOOK

Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.


Complex Systems and Self-organization Modelling

Complex Systems and Self-organization Modelling

Author: Cyrille Bertelle

Publisher: Springer Science & Business Media

Published: 2008-12-03

Total Pages: 233

ISBN-13: 3540880739

DOWNLOAD EBOOK

This book, the outcome of a workshop meeting within ESM 2006, explores the use of emergent computing and self-organization modeling within various applications of complex systems.


Dynamic Patterns

Dynamic Patterns

Author: J. A. Scott Kelso

Publisher: MIT Press

Published: 1995

Total Pages: 368

ISBN-13: 9780262611312

DOWNLOAD EBOOK

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.


Information and Self-Organization

Information and Self-Organization

Author: Hermann Haken

Publisher: Springer Science & Business Media

Published: 2006-09-14

Total Pages: 258

ISBN-13: 3540330232

DOWNLOAD EBOOK

The widespread interest this book has found among professors, scientists and stu dents working in a variety of fields has made a new edition necessary. I have used this opportunity to add three new chapters on recent developments. One of the most fascinating fields of modern science is cognitive science which has become a meet ing place of many disciplines ranging from mathematics over physics and computer science to psychology. Here, one of the important links between these fields is the concept of information which, however, appears in various disguises, be it as Shan non information or as semantic information (or as something still different). So far, meaning seemed to be exorcised from Shannon information, whereas meaning plays a central role in semantic (or as it is sometimes called "pragmatic") information. In the new chapter 13 it will be shown, however, that there is an important interplay between Shannon and semantic information and that, in particular, the latter plays a decisive role in the fixation of Shannon information and, in cognitive processes, al lows a drastic reduction of that information. A second, equally fascinating and rapidly developing field for mathematicians, computer scientists and physicists is quantum information and quantum computa tion. The inclusion of these topics is a must for any modern treatise dealing with in formation. It becomes more and more evident that the abstract concept of informa tion is inseparably tied up with its realizations in the physical world.


Information and Self-Organization

Information and Self-Organization

Author: Hermann Haken

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 204

ISBN-13: 3662078937

DOWNLOAD EBOOK

Complex systems are ubiquitous, and practically all branches of science ranging from physics through chemistry and biology to economics and sociology have to deal with them. In this book we wish to present concepts and methods for dealing with complex systems from a unifying point of view. Therefore it may be of inter est to graduate students, professors and research workers who are concerned with theoretical work in the above-mentioned fields. The basic idea for our unified ap proach sterns from that of synergetics. In order to find unifying principles we shall focus our attention on those situations where a complex system changes its macroscopic behavior qualitatively, or in other words, where it changes its macroscopic spatial, temporal or functional structure. Until now, the theory of synergetics has usually begun with a microscopic or mesoscopic description of a complex system. In this book we present an approach which starts out from macroscopic data. In particular we shall treat systems that acquire their new structure without specific interference from the outside; i. e. systems which are self-organizing. The vehicle we shall use is information. Since this word has several quite different meanings, all of which are important for our purpose, we shall discuss its various aspects. These range from Shannon information, from which all semantics has been exorcised, to the effects of information on receivers and the self-creation of meaning.


Understanding Natural Phenomena

Understanding Natural Phenomena

Author: Vinod Wadhawan

Publisher: Createspace Independent Publishing Platform

Published: 2017-07-04

Total Pages: 586

ISBN-13: 9781548527938

DOWNLOAD EBOOK

'This book is epic in the sense that it covers so much ground that one is left somewhat dizzy. And yet, it all makes sense once one realizes how it is possible for something that is complex, for example a flower, to evolve via natural processes from humble beginnings. After all, starting with single-cell creatures such as amoebae we follow a complicated but rational evolutionary path to arrive at the most complex organizations that we know of - ourselves. So, if you follow the logic of this book, starting with the basic concepts of thermodynamics, symmetry, quantum theory and so on, you will be treated to many many thought-provoking ideas, which will likely challenge your own preconceptions and leave you thirsting for more.' (From the foreword by Prof. A. M. Glazer, University of Oxford) Science is all about trying to understand natural phenomena under the strict discipline imposed by the celebrated scientific method. Practically all the systems we encounter in Nature are dynamical systems, meaning that they evolve with time. Among them there are the 'simple' or 'simplifiable' systems, which can be handled by traditional, reductionistic science; and then there are 'complex' systems, for which nonreductionistic approaches have to be attempted for understanding their evolution. In this book the author makes a case that a good way to understand a large number of natural phenomena, both simple and complex, is to focus on their self-organization and emergence aspects. Self-organization and emergence are rampant in Nature and, given enough time, their cumulative effects can be so mind-boggling that many people have great difficulty believing that there is no designer involved in the emergence of all the structure and order we see around us. But it is really quite simple to understand how and why we get so much 'order for free'. It all happens because, as ordained by the infallible second law of thermodynamics, all 'thermodynamically open' systems in our ever-expanding and cooling (and therefore gradient-creating) universe constantly tend to move towards equilibrium and stability, often ending up in ordered configurations. In other words, order emerges because Nature tends to find efficient ways to annul gradients of all types. This book will help you acquire a good understanding of the essential features of many natural phenomena, via the complexity-science route. It has four parts: (1) Complexity Basics; (2) Pre-Human Evolution of Complexity; (3) Humans and the Evolution of Complexity; and (4) Appendices. The author gives centrestage to the second law of thermodynamics for 'open' systems, which he describes as 'the mother of all organizing principles'. He also highlights a somewhat unconventional statement of this law: 'Nature abhors gradients'. The book is written at two levels, one of which hardly uses any mathematical equations; the mathematical treatment of some relevant topics has been pushed to the last part of the book, in the form of ten appendices. Therefore the book should be accessible to a large readership. It is a general-science book written in a reader-friendly language, but without any dumbing down of the narrative.


Self-Organization and the City

Self-Organization and the City

Author: Juval Portugali

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 359

ISBN-13: 3662040999

DOWNLOAD EBOOK

This book integrates the theories of complex self-organizing systems with the rich body of discourse and literature developed in what might be called ‘social theory of cities and urbanism’. It uses techniques from dynamical complexity and synergetics to successfully tackle open social science questions.


How Nature Works

How Nature Works

Author: Per Bak

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 229

ISBN-13: 1475754264

DOWNLOAD EBOOK

Self-organized criticality, the spontaneous development of systems to a critical state, is the first general theory of complex systems with a firm mathematical basis. This theory describes how many seemingly desperate aspects of the world, from stock market crashes to mass extinctions, avalanches to solar flares, all share a set of simple, easily described properties. "...a'must read'...Bak writes with such ease and lucidity, and his ideas are so intriguing...essential reading for those interested in complex systems...it will reward a sufficiently skeptical reader." -NATURE "...presents the theory (self-organized criticality) in a form easily absorbed by the non-mathematically inclined reader." -BOSTON BOOK REVIEW "I picture Bak as a kind of scientific musketeer; flamboyant, touchy, full of swagger and ready to join every fray... His book is written with panache. The style is brisk, the content stimulating. I recommend it as a bracing experience." -NEW SCIENTIST