Information on recent progress in laser remote sensor (LIDAR) technology can be found scattered throughout numerous journal articles and conference proceedings, but until now there has been no work that summarizes recent advancements and achievements in the field in a detailed format. Laser Remote Sensing provides an up-to-date, comprehensiv
This e-book is an essential review of land-based laser sensing methods, such as differential absorption, Raman scattering, laser-induced fluorescence, Doppler effect methods, laser-induced breakdown spectroscopy, and laser ultrasonics, and their respective application to specific industrial needs, such as natural gas leak detection, hydrogen gas leak detection, pollutant detection, wind profiling for windmill sites, minor constituent monitoring and concrete structure health monitoring. Readers will gain an updated overview of laser remote sensing techniques and their applications to the industrial environment.
Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. - Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation - Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media - Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry
Tunability has added an important dimension to a variety of laser devices and led to new systems and applications. From laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Incorporating nine new chapters since the first edition, Tunable Laser Applications, Second Edition reflects the significant developments
The public's serious concern about the uncertainties and dangers of the conse quences of human activities on environmental quality demands policies to control the situation and to prevent its deterioration. But far-reaching decisions on the environmental policy are impaired or even made impossible as long as the relevant ecological relations are not sufficiently understood and large-scale quantitative information on the most important parameters is not available in sufficient quality and quantity. The techniques of remote sensing offer new ways of procuring data on natural phenomena with three main advantages - the large distance between sensor and object prevents interference with the environmental conditions to be measured, - the potentiality for large-scale and even global surveys yields a new dimension for the investigations of the environmental parameters, - the extremely wide, spectral range covered by the whole diversity of sensors discloses many properties of the environmental media not detectable within a single wave band (as e.g. the visible). These significant additions to the conventional methods of environmental studies and the particular qualification of several remote sensing methods for quantitative determination of the natural parameters makes this new investigation technique an important tool both to the scientists studying the ecological relationship and the administration in charge of the environmental planning and protection.
The alarming consequences of global climate change have highlighted the need to take urgent steps to combat the causes of air pollution. Hence, understanding the Earth's atmosphere is a vital component in Man's emerging quest for developing sustainable modes of behaviour in the 21st century. Written by a team of expert scientists, the Handbook of Atmospheric Science provides a broad and up-to-date account of our understanding of the natural processes that occur within the atmosphere. It examines how Man’s activities have had a detrimental effect on the climate, and how measures may be implemented in order to modify these activities. The book progresses through chapters covering the principles of atmospheric science and the current problems of air pollution at the urban, regional and global scales, to the tools and applications used to understand air pollution. The Handbook of Atmospheric Science offers an excellent overview of this multi-disciplinary subject and will prove invaluable to both students and researchers of atmospheric science, air pollution and global change.
Encyclopedia of Atmospheric Sciences, Second Edition, Six Volume Set is an authoritative resource covering all aspects of atmospheric sciences, including both theory and applications. With more than 320 articles and 1,600 figures and photographs, this revised version of the award-winning first edition offers comprehensive coverage of this important field. The six volumes in this set contain broad-ranging articles on topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction. The Encyclopedia is an ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences. It is written at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Covers all aspects of atmospheric sciences—including both theory and applications Presents more than 320 articles and more than 1,600 figures and photographs Broad-ranging articles include topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction An ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences
This volume on laser radar includes papers which cover topics such as: requirements of a coherent laser pulse-Doppler radar; analysis and optimization of laser ranging techniques; and error analysis of optical range measurement systems.