This book offers a unique compilation of papers in mathematics and physics from Freeman Dyson's 50 years of activity and research. These are the papers that Dyson considers most worthy of preserving, and many of them are classics. The papers are accompanied by commentary explaining the context from which they originated and the subsequent history of the problems that either were solved or left unsolved. This collection offers a connected narrative of the developments in mathematics and physics in which the author was involved, beginning with his professional life as a student of G. H. Hardy.
This collection is a compilation of Freeman Dyson's papers in mathematics and physics from over 50 years of activity and research. There is an accompanying commentary that explains the context from which the papers originated and the subsequent history of the problems that were either solved or left unsolved.
This book is a sequel to the volume of selected papers of Dyson up to 1990 that was published by the American Mathematical Society in 1996. The present edition comprises a collection of the most interesting writings of Freeman Dyson, all personally selected by the author, from the period 1990–2014. The five sections start off with an Introduction, followed by Talks about Science, Memoirs, Politics and History, and some Technical Papers. The most noteworthy is a lecture entitled Birds and Frogs to the American Mathematical Society that describes two kinds of mathematicians with examples from real life. Other invaluable contributions include an important tribute to C. N. Yang written for his retirement banquet at Stony Brook University, as well as a historical account of the Operational Research at RAF Bomber Command in World War II provocatively titled A Failure of Intelligence. The final section carries the open-ended question of whether any conceivable experiment could detect single gravitons to provide direct evidence of the quantization of gravity — Is a Graviton Detectable? Various possible graviton-detectors are examined. This invaluable compilation contains unpublished lectures, and surveys many topics in science, mathematics, history and politics, in which Freeman Dyson has been so active and well respected around the world.
This handsomely-bound volume presents selected papers written by S.A. Amitsur on various topics in algebra. The approximately 50 papers in the first volume deal with general ring theory and rings satisfying a polynomial identity. A sampling of topics includes algebras over infinite fields, commutative linear differential operators, a generalization of Hilbert's Nullstellensatz, and central embeddings in semi-simple rings. Two essays on Amitsur's work and a biography also are included. The volume is not indexed. c. Book News Inc.
Eugene Dynkin is a rare example of a contemporary mathematician who has achieved outstanding results in two quite different areas of research: algebra and probability. In both areas, his ideas constitute an essential part of modern mathematical knowledge and form a basis for further development. Although his last work in algebra was published in 1955, his contributions continue to influence current research in algebra and in the physics of elementary particles. His work in probability is part of both the historical and the modern development of the topic. This volume presents Dynkin's scientific contributions in both areas. Included are Commentary by recognized experts in the corresponding fields who describe the time, place, role, and impact of Dynkin's research and achievements. Biographical notes and the recollections of his students are also featured.This book is jointly published by the AMS and the International Press.
Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.
Over the last four decades, Phillip Griffiths has been a central figure in mathematics. During this time, he made crucial contributions in several fields, including complex analysis, algebraic geometry, and differential systems. His books and papers are distinguished by a remarkably lucid style that invites the reader to understand not only the subject at hand, but also the connections among seemingly unrelated areas of mathematics. Even today, many of Griffiths' papers are used as a standard source on a subject. Another important feature of Griffiths' writings is that they often bring together classical and modern mathematics. The four parts of Selected Works--Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems--are organized according to the subject matter and are supplemented by Griffiths' brief, but extremely illuminating, personal reflections on the mathematical content and the times in which they were produced. Griffiths' Selected Works provide the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.
The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers--in themselves constituting a history of the subject--is an invaluable aid to the student of differential algebra. In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a "new geometry" that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory. The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.
".... with the huge success of the quantum theory, starting especially with the Schrödinger equation in 1926, came a feeling among the leading physicists that mathematics should keep in the background or, as one person put it, `elegance is for tailors'. From the other side, mid-twentieth century mathematicians were not much more hospitable about intrusions of physics, as we can see, for instance, in Hardy's well known little essay. Walter was one of the first, in the post-war years, to try to put things back together." -- from the Foreword by Elliott Lieb This book contains Thirring's scientific contributions to mathematical physics, statistical physics, general relativity, quantum field theory, and elementary particle theory from 1950 onward. The order of the papers within the various sections is chronological and reflects the development of the fields during the second half of this century. In some cases, Thirring returned to problems decades later when the tools for their solution had ripened. Each section contains introductory comments by Thirring, outlining his motivation for the work at that time.