The rapid development of seismic acquisition, including wide-azimuth surveys, increased channel count, and simultaneous shooting, is made possible by technological advancements today that will enable the production of clearer seismic images tomorrow. The core of this book is the relationship between acquisition parameters and seismic image quality.
Seismic surveys are subject to many different design criteria, but often the parameters are established based on an outdated view of how data can be acquired and how it will be processed. This book highlights what is possible using modern acquisition methods, techniques, and equipment, and how these may impact seismic survey design and acquisition.
This book covers in detail the entire workflow for quantitative seismic interpretation of subsurface modeling and characterization. It focusses on each step of the geo-modeling workflow starting from data preconditioning and wavelet extraction, which is the basis for the reservoir geophysics described and introduced in the following chapters. This book allows the reader to get a comprehensive insight of the most common and advanced workflows. It aims at graduate students related to energy (hydrocarbons), CO2 geological storage, and near surface characterization as well as professionals in these industries. The reader benefits from the strong and coherent theoretical background of the book, which is accompanied with real case examples.
Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.
Demonstrates how spectral decomposition and time-frequency methods have led to improved understanding and use of nonlinear harmonics, near-surface guided waves, layer-induced anisotropy, velocity dispersion and attenuation, interference, and Biot reflection. The discussion includes examples, figures, and literature references for further study.
Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs (SEG Distinguished Instructor Series No. 17) covers the use of microseismic data to enhance engineering design of hydraulic fracturing and well completion. The book, which accompanies the 2014 SEG Distinguished Instructor Short Course, describes the design, acquisition, processing, and interpretation of an effective microseismic project. The text includes a tutorial of the basics of hydraulic fracturing, including the geologic and geomechanical factors that control fracture growth. In addition to practical issues associated with collecting and interpreting microseismic data, potential pitfalls and quality-control steps are discussed. Actual case studies are used to demonstrate engineering benefits and improved production through the use of microseismic monitoring. Providing a practical user guide for survey design, quality control, interpretation, and application of microseismic hydraulic fracture monitoring, this book will be of interest to geoscientists and engineers involved in development of unconventional reservoirs.
"This comprehensive reference work provides immediate, fingertip access to state-of-the-art technology in nearly 700 self-contained articles written by over 900 international authorities. Each article in the Encyclopedia features current developments and trends in computers, software, vendors, and applications...extensive bibliographies of leading figures in the field, such as Samuel Alexander, John von Neumann, and Norbert Wiener...and in-depth analysis of future directions."
“We ask Europeans to more carefully assess the potential for co-operation with Russia.” Yuri Shafranik, Chairman, Union of Oil & Gas Producers of Russia The Oil & Gas Year Russia 2020 highlights the country’s latest milestones in bolstering its position on the global energy market. The Russian oil and gas industry has been moving further east to boost its hydrocarbons production, launching the Power of Siberia pipeline and continuously exploring the potential of Arctic regions and the Northern Sea Route. “Tatarstan has been the country’s scientific and practical training ground for developing bituminous oil production technologies.” Rustam Minnikhanov, President of the Republic of Tatarstan The Oil & Gas Year Russia 2020 spotlights the Republic of Tatarstan, one of Russia’s powerful oil bases. Tatarstan’s dynamic local industry has maintained and even increased its oil production over recent years. Produced in partnership with the Union of Oil & Gas Producers of Russia, this edition of The Oil & Gas Year Russia series provides foresight to investors and companies looking at strategic growth opportunities in the country, at a time when major fiscal regulatory changes and public policies to support import substitution are reshaping one of the world’s largest energy-producing markets. This product is also available in Russian.