In coastal seas, from the tropics to the poles, seaweeds supply the energy required to support diverse coastal marine life and provide habitat for invertebrates and fish. Retaining the highly successful approach and structure of the first edition, this is a synthesis of the role of seaweeds in underpinning the functioning of coastal ecosystems worldwide. It has been fully updated to cover the major developments of the past twenty years, including current research on the endosymbiotic origin of algae, molecular biology including 'omics', chemical ecology, invasive seaweeds, photobiology and stress physiology. In addition to exploring the processes by which seaweeds, as individuals and communities, interact with their biotic and abiotic environment, the book presents exciting new research on how seaweeds respond to local and global environmental change. It remains an invaluable resource for students and provides an entry into the scientific literature of a wide range of topics.
The largest seaweed, giant kelp (Macrocystis) is the fastest growing and most prolific of all plants found on earth. Growing from the seafloor and extending along the ocean surface in lush canopies, giant kelp provides an extensive vertical habitat in a largely two-dimensional seascape. It is the foundation for one of the most species-rich, productive, and widely distributed ecological communities in the world. Schiel and Foster’s scholarly review and synthesis take the reader from Darwin’s early observations to contemporary research, providing a historical perspective for the modern understanding of giant kelp evolution, biogeography, biology, and physiology. The authors furnish a comprehensive discussion of kelp species and forest ecology worldwide, with considerations of human uses and abuses, management and conservation, and the current and likely future impacts of global change. This volume promises to be the definitive treatise and reference on giant kelp and its forests for many years, and it will appeal to marine scientists and others who want a better appreciation and understanding of these wondrous forests of the sea.
A rewritten and re-organised edition of The Physiological Ecology of Seaweeds (1985). Seaweed Ecology and Physiology surveys the broad literature, but it is not merely an update of the earlier book. This book contains an introductory chapter reviewing seaweed morphology, cytology, and life histories. The chapter on community level ecology now includes six guest essays by senior algal ecologists which conveys the excitement of phycological research. The treatment of tropical seaweeds had been expanded, reflecting the growing literature from tropical regions, and the authors' experiences in the tropics. The final chapter on mariculture is much larger, and includes a case study on how principles of physiological ecology were applied in developing the carrageenan industry. Finally there is an appendix summarising the taxonomic position and nomenclature of the species mentioned in the book.
Seaweeds, also known as macroalgae, are among the most important primary producers and act as ecological engineers on rocky coasts of the world’s oceans. In addition to their extreme ecological importance they are also of high economic relevance. Complementing available textbooks with its more research-oriented approach, this volume contains 22 chapters by renowned experts, grouped in five parts. In Part I fundamental processes and acclimation strategies of seaweeds towards the abiotic environment are covered. Part II focuses on the multitude of biotic interactions in seaweed communities, and in Part III the reader is introduced to the structure and function of the main seaweed systems of the world. The chapters of Part IV highlight and discuss the effects of global and local environmental changes on seaweeds and their communities. In the final Part V a comprehensive overview of developments in seaweed aquaculture, industrial applications and the overall economic importance of seaweeds is provided. Summarizing the advances in seaweed biology achieved within the last few decades, this book also identifies gaps in the present knowledge and needs for future research.
Global warming is accelerating faster than the ability for natural repair, and environmental stresses are damaging ecosystems, all affecting physical and biological systems on Earth. A new Nasa-led study shows that human activity has caused climate changes resulting in permafrost thawing, acid rain, and lower productivity in lakes as well as increased emissions of greenhouse gases, including CO2, N20, CH4, CF3, and CFC. Marine plants play a vital role in maintaining the balance of marine environments, while serving as a source of food for humankind and important chemical compounds. Microalgae and seaweed have enormous potential for reducing global warming and climate change. During photosynthesis algae grow, draw CO2 from the atmosphere, release oxygen, and produce solar biofuel. Experts in the life of marine plant ecosystems in globally changing environments contributed chapters to this book. The target readers are phycologists, ecologists, atmospheric scholars, conservationists, environmentalists, and ecologically aware laymen.
In coastal seas, from the tropics to the poles, seaweeds supply the energy required to support diverse coastal marine life and provide habitat for invertebrates and fish. Retaining the highly successful approach and structure of the first edition, this is a synthesis of the role of seaweeds in underpinning the functioning of coastal ecosystems worldwide. It has been fully updated to cover the major developments of the past twenty years, including current research on the endosymbiotic origin of algae, molecular biology including 'omics', chemical ecology, invasive seaweeds, photobiology and stress physiology. In addition to exploring the processes by which seaweeds, as individuals and communities, interact with their biotic and abiotic environment, the book presents exciting new research on how seaweeds respond to local and global environmental change. It remains an invaluable resource for students and provides an entry into the scientific literature of a wide range of topics.
The book provides an overview of research on the remarkable diversity, adaptive genetic differentiation, and evolutionary complexity of intertidal macroalgae species. Through incorporating molecular data, ecological niche and model-based phylogeographic inference, this book presents the latest findings and hypotheses on the spatial distribution and evolution of seaweeds in the context of historical climate change (e.g. the Quaternary ice ages), contemporary global warming, and increased anthropogenic influences. The chapters in this book highlight past and current research on seaweed phylogeography and predict the future trends and directions. This book frames a number of research cases to review how biogeographic processes and interactive eco-genetic dynamics shaped the demographic histories of seaweeds, which furthermore enhances our understanding of speciation and diversification in the sea. Dr. Zi-Min Hu is an associate professor at Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. Dr. Ceridwen Fraser is a senior lecturer at Fenner School of Environment and Society, Australian National University, Canberra, Australia.
This updated and expanded guide thoroughly documents every aspect of seaweed life, from species identification and seaweed biology to the essential—and often surprising—roles seaweed plays in the marine ecosystem and our everyday lives. Seaweeds are used in everything from cosmetics to sustainable biofuels, and some species, like kelp, contribute to the remediation of coastal ecosystems. Featuring an attractive new full-color design, the expanded Pacific Seaweeds includes updated species descriptions, dozens of additional color photos, new species discovered since the original edition, and brand-new sections on common shore plants and the use of DNA techniques to discover, catalog and identify seaweeds. It also features several new recipes and an essay on umami—because in addition to all its other uses, some species of seaweed make delectable food. Packed with illustrations, vivid color photographs, comprehensive scientific information and further readings, this easy-to-use guidebook will appeal to marine biologists, amateur beachcombers, gourmet foragers and everyone in between.