Seasonal Adjustment as a Practical Problem

Seasonal Adjustment as a Practical Problem

Author: F. A. G. den Butter

Publisher: North Holland

Published: 1991

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

Presented in this book is the theory and the practice of seasonal adjustment of economic series from the viewpoint of economic policy design. The book offers the economist and practical statistician the opportunity to acquire new and important analytical insights as well as practical tools. Moreover, it discusses the historical development of the practice of seasonal adjustment as applied for policy analysis with Persons in the early twenties, via Zaycoff and Mendershausen in the thirties, through present day modelling with the aid of Kalman filters. Each method treated is empirically illustrated while a comparative analysis is made to assess the appropriateness of the various methods.


Economic Time Series

Economic Time Series

Author: William R. Bell

Publisher: CRC Press

Published: 2018-11-14

Total Pages: 544

ISBN-13: 1439846588

DOWNLOAD EBOOK

Economic Time Series: Modeling and Seasonality is a focused resource on analysis of economic time series as pertains to modeling and seasonality, presenting cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time s


Forecasting: principles and practice

Forecasting: principles and practice

Author: Rob J Hyndman

Publisher: OTexts

Published: 2018-05-08

Total Pages: 380

ISBN-13: 0987507117

DOWNLOAD EBOOK

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.


Seasonality in Regression

Seasonality in Regression

Author: Svend Hylleberg

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 284

ISBN-13: 1483277747

DOWNLOAD EBOOK

Seasonality in Regression presents the problems of seasonality in economic regression models. This book discusses the procedures that may have application in practical econometric work. Organized into eight chapters, this book begins with an overview of the tremendous increase in the computational capabilities made by the development of the electronic computer that has profound implications for the way seasonality is handled by economists. This text then examines some seasonal models and their characteristics. Other chapters consider the most frequently applied evaluation criteria and appraise the values in the applications. This book discusses as well the frequency domain estimators and provides insight into problems of estimating the disturbance–covariance matrix through the use of the disturbance spectrum. The final chapter deals with the main objective of the treatment of personality to formulate and estimate econometric models. This book is a valuable resource for economists and econometricians who have knowledge of econometrics at an advanced undergraduate or graduate level.


Compilation Manual for an Index of Services Production

Compilation Manual for an Index of Services Production

Author: OECD

Publisher: OECD Publishing

Published: 2007-07-03

Total Pages: 142

ISBN-13: 9264034447

DOWNLOAD EBOOK

The OECD Compilation Manual for Index of Services Production contains guidelines and methodologies to measure short-term production activities of the services sector by national agencies and international organisations.


The Econometric Analysis of Seasonal Time Series

The Econometric Analysis of Seasonal Time Series

Author: Eric Ghysels

Publisher: Cambridge University Press

Published: 2001-06-18

Total Pages: 258

ISBN-13: 9780521565882

DOWNLOAD EBOOK

Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.


A Course in Time Series Analysis

A Course in Time Series Analysis

Author: Daniel Peña

Publisher: John Wiley & Sons

Published: 2011-01-25

Total Pages: 494

ISBN-13: 1118031229

DOWNLOAD EBOOK

New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.


Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Author: Estela Bee Dagum

Publisher: Springer

Published: 2016-06-20

Total Pages: 293

ISBN-13: 3319318225

DOWNLOAD EBOOK

This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling.