Search for the Associated Production of a Higgs Boson with a Single Top Quark in Proton-proton Collisions at $$ \sqrt{s}

Search for the Associated Production of a Higgs Boson with a Single Top Quark in Proton-proton Collisions at $$ \sqrt{s}

Author:

Publisher:

Published: 2016

Total Pages: 47

ISBN-13:

DOWNLOAD EBOOK

Our paper presents the search for the production of a Higgs boson in association with a single top quark, using data collected in proton-proton collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. The search exploits a variety of Higgs boson decay modes resulting in final states with photons, bottom quarks, and multiple charged leptons, including tau leptons, and employs a variety of multivariate techniques to maximize sensitivity to the signal. Furthermore, our analysis is optimized for the opposite sign of the Yukawa coupling to that in the standard model and corresponding to a large enhancement of the signal cross section. In the absence of an excess of candidate signal events over the background predictions, 95% confidence level observed (expected) upper limits on anomalous tHq production are set, ranging between 600 (450) fb and 1000 (700) fb depending on the assumed diphoton branching fraction of the Higgs boson. This is the first time that results on anomalous tHq production have been reported.


Search for the Associated Production of a Higgs Boson with a Single Top Quark in Proton-proton Collisions at S

Search for the Associated Production of a Higgs Boson with a Single Top Quark in Proton-proton Collisions at S

Author:

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a WW pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.4 inverse femtobarns at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalised to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.


Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC

Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC

Author: Cristina Martin Perez

Publisher: Springer Nature

Published: 2022-02-09

Total Pages: 291

ISBN-13: 3030902064

DOWNLOAD EBOOK

In this work, the interaction between the Higgs boson and the top quark is studied with the proton-proton collisions at 13 TeV provided by the LHC at the CMS detector at CERN (Geneva). At the LHC, these particles are produced simultaneously via the associate production of the Higgs boson with one top quark (tH process) or two top quarks (ttH process). Compared to many other possible outcomes of the proton-proton interactions, these processes are very rare, as the top quark and the Higgs boson are the heaviest elementary particles known. Hence, identifying them constitutes a significant experimental challenge. A high particle selection efficiency in the CMS detector is therefore crucial. At the core of this selection stands the Level-1 (L1) trigger system, a system that filters collision events to retain only those with potential interest for physics analysis. The selection of hadronically decaying τ leptons, expected from the Higgs boson decays, is especially demanding due to the large background arising from the QCD interactions. The first part of this thesis presents the optimization of the L1 τ algorithm in Run 2 (2016-2018) and Run 3 (2022-2024) of the LHC. It includes the development of a novel trigger concept for the High-Luminosity LHC, foreseen to start in 2027 and to deliver 5 times the current instantaneous luminosity. To this end, sophisticated algorithms based on machine learning approaches are used, facilitated by the increasingly modern technology and powerful computation of the trigger system. The second part of the work presents the search of the tH and ttH processes with the subsequent decays of the Higgs boson to pairs of τ lepton, W bosons or Z bosons, making use of the data recorded during Run 2. The presence of multiple particles in the final state, along with the low cross section of the processes, makes the search an ideal use case for multivariant discriminants that enhance the selectivity of the signals and reject the overwhelming background contributions. The discriminants presented are built using state-of-the-art machine learning techniques, able to capture the correlations amongst the processes involved, as well as the so-called Matrix Element Method (MEM), which combines the theoretical description of the processes with the detector resolution effects. The level of sophistication of the methods used, along with the unprecedented amount of collision data analyzed, result in the most stringent measurements of the tH and ttH cross sections up to date.


ATLAS Measurements of the Higgs Boson Coupling to the Top Quark in the Higgs to Diphoton Decay Channel

ATLAS Measurements of the Higgs Boson Coupling to the Top Quark in the Higgs to Diphoton Decay Channel

Author: Jennet Elizabeth Dickinson

Publisher: Springer Nature

Published: 2021-11-16

Total Pages: 233

ISBN-13: 3030863689

DOWNLOAD EBOOK

During Run 2 of the Large Hadron Collider, the ATLAS experiment recorded proton-proton collision events at 13 TeV, the highest energy ever achieved in a collider. Analysis of this dataset has provided new opportunities for precision measurements of the Higgs boson, including its interaction with the top quark. The Higgs-top coupling can be directly probed through the production of a Higgs boson in association with a top-antitop quark pair (ttH). The Higgs to diphoton decay channel is among the most sensitive for ttH measurements due to the excellent diphoton mass resolution of the ATLAS detector and the clean signature of this decay. Event selection criteria were developed using novel Machine Learning techniques to target ttH events, yielding a precise measurement of the ttH cross section in the diphoton channel and a 6.3 $\sigma$ observation of the ttH process in combination with other decay channels, as well as stringent limits on CP violation in the Higgs-top coupling.


Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Author: Jan Kieseler

Publisher: Springer

Published: 2016-06-15

Total Pages: 172

ISBN-13: 3319400053

DOWNLOAD EBOOK

This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.


Higgs Properties at the LHC

Higgs Properties at the LHC

Author: Jason Tsz Shing Yue

Publisher: Springer

Published: 2017-08-29

Total Pages: 143

ISBN-13: 331963402X

DOWNLOAD EBOOK

This thesis studies the properties of the Higgs particle, discovered at the Large Hadron Collider (LHC) in 2012, in order to elucidate its role in electroweak symmetry breaking and cosmological phase transition in the early universe. It shows that a generic spin-2 Higgs impostor is excluded by the precision measurements of electroweak observables and perturbative unitarity considerations. It obtains LHC constraints on anomalous CP-violating Higgs-Top Yukawa couplings and examines the prospects of their measurement in future experiments. Lastly, it discusses in detail the electroweak phase transition and generation of cosmological matter–antimatter asymmetry in the universe with anomalous Higgs couplings.


XXII DAE High Energy Physics Symposium

XXII DAE High Energy Physics Symposium

Author: Md. Naimuddin

Publisher: Springer

Published: 2018-05-23

Total Pages: 879

ISBN-13: 3319731718

DOWNLOAD EBOOK

These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As many as 400 physicists and researchers attended the 22nd Symposium to discuss the latest advances in the field. A poster session was also organized to highlight the work and findings of young researchers. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field.


Search for New Phenomena in Top-Antitop Quarks Final States with Additional Heavy-Flavour Jets with the ATLAS Detector

Search for New Phenomena in Top-Antitop Quarks Final States with Additional Heavy-Flavour Jets with the ATLAS Detector

Author: Daiki Yamaguchi

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 279

ISBN-13: 9811509328

DOWNLOAD EBOOK

This book reports on the search for a new heavy particle, the Vector-Like Top quark (VLT), in the Large Hadron Collider (LHC) at CERN. The signal process is the pair production of VLT decaying into a Higgs boson and top quark (TT→Ht+X, X=Ht, Wb, Zt). The signal events result in top–antitop quarks final states with additional heavy flavour jets. The book summarises the analysis of the data collected with the ATLAS detector in 2015 and 2016. In order to better differentiate between signals and backgrounds, exclusive taggers of top quark and Higgs boson were developed and optimised for VLT signals. These efforts improved the sensitivity by roughly 30%, compared to the previous analysis. The analysis outcomes yield the strongest constraints on parameter space in various BSM theoretical models. In addition, the book addresses detector operation and the evaluation of tracking performance. These efforts are essential to properly collecting dense events and improving the accuracy of the reconstructed objects that are used for particle identification. As such, they represent a valuable contribution to data analysis in extremely dense environments.


The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures

The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures

Author: Daniel Salerno

Publisher: Springer Nature

Published: 2019-10-25

Total Pages: 207

ISBN-13: 3030312577

DOWNLOAD EBOOK

The work presented in this PhD dissertation is the first search at CMS for Higgs bosons produced in association with top quarks (ttH) in a final state consisting of only jets. The results presented in this book uncover a new class of ttH events that will help us elucidate our understanding of the Yukawa sector interactions between the Higgs boson and the top quark. Despite this being the most common decay signature for ttH, a large contamination of SM backgrounds makes it the most challenging for extracting a signal from data. The PhD thesis presents many sophisticated tools and techniques that were developed in order to overcome these challenges. These tools pave the way for future analyses to investigate other standard model and beyond-standard model physics.