The project reported here was a search for new super symmetric particles in proton-proton collisions at the LHC. It has produced some of the world’s best exclusion limits on such new particles. Furthermore, dedicated simulation studies and data analyses have also yielded essential input to the upgrade activities of the CMS collaboration, both for the Phase-1 pixel detector upgrade and for the R&D studies in pursuit of a Phase-2 end cap calorimeter upgrade.
This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.
This work was nominated as an outstanding PhD thesis by the LPSC, Université Grenoble Alpes, France. The LHC Run 1 was a milestone in particle physics, leading to the discovery of the Higgs boson, the last missing piece of the so-called "Standard Model" (SM), and to important constraints on new physics, which challenge popular theories like weak-scale supersymmetry. This thesis provides a detailed account of the legacy of the LHC Run 1 ≤¥regarding these aspects. First, the SM and the need for its extension are presented in a concise yet revealing way. Subsequently, the impact of the LHC Higgs results on scenarios of new physics is assessed in detail, including a careful discussion of the relevant uncertainties. Two approaches are considered: generic modifications of the Higgs couplings, possibly arising from extended Higgs sectors or higher-dimensional operators; and tests of specific new physics models. Lastly, the implications of the null results of the searches for new physics are discussed with a particular focus on supersymmetric dark matter candidates. Here as well, two approaches are presented: the "simplified models" approach, and recasting by event simulation. This thesis stands out for its educational approach, its clear language and the depth of the physics discussion. The methods and tools presented offer readers essential practical tools for future research.
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
After an extensive overview of the Standard Model and of the theory and phenomenology of Supersymmetry, this book describes the recent development of the ATLAS Particle Flow algorithm, a hadronic reconstruction technique aiming at enhancing the sensitivity of the experiment to new physics through the combination of the information from different ATLAS sub-detectors. The first ever ATLAS strong SUSY search exploiting this technique is also described, reporting the results and exclusion limits obtained using the complete proton-proton collision dataset recorded by the ATLAS experiment during the second Run of the Large Hadron Collider (LHC).
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Supersymmetry (SUSY) is one of the most important ideas ever conceived in particle physics. It is a symmetry that relates known elementary particles of a certain spin to as yet undiscovered particles that differ by half a unit of that spin (known as Superparticles). Supersymmetric models now stand as the most promising candidates for a unified theory beyond the Standard Model (SM). SUSY is an elegant and simple theory, but its existence lacks direct proof. Instead of dismissing supersymmetry altogether, Supersymmetry Beyond Minimality: from Theory to Experiment suggests that SUSY may exist in more complex and subtle manifestation than the minimal model. The book explores in detail non-minimal SUSY models, in a bottom-up approach that interconnects experimental phenomena in the fermionic and bosonic sectors. The book considers with equal emphasis the Higgs and Superparticle sectors, and explains both collider and non-collider experiments. Uniquely, the book explores charge/parity and lepton flavour violation. Supersymmetry Beyond Minimality: from Theory to Experiment provides an introduction to well-motivated examples of such non-minimal SUSY models, including the ingredients for generating neutrino masses and/or relaxing the tension with the heavily constraining Large Hadron Collider (LHC) data. Examples of these scenarios are explored in depth, in particular the discussions on Next-to-Minimal Supersymmetric SM (NMSSM) and B-L Supersymmetric SM (BLSSM).
This thesis focuses on searches for squarks with the ATLAS detector in "compressed" scenarios where the scalar top is very close in mass to the lightest supersymmetric particle. These models are theoretically appealing because the presence of a quasi-degenerate scalar top enhances the self-annihilation cross-section of the lightest supersymmetric particle, acting therefore as a regulator of the dark matter relic density. Two main analyses are presented: the first is a search for scalar tops decaying to charm quarks. The identification of jets originating from the charm quark is very challenging due to its short lifetime. The calibration of tools for charm-tagging has paved the way to measuring the decay of the Higgs boson to pairs of charm quarks. The second analysis presented is the development of a novel technique for reconstructing low momentum b-hadrons. This tool has enabled the ATLAS collaboration to explore topologies that were previously inaccessible.
Questo documento riassume lo stato attuale degli ricerche studi, teorici e sperimentali, sulla produzione di coppie di bosoni di Higgs, e sui vincoli, sia diretti che indiretti, al valore del termine di auto-interazione del bosone di Higgs, con l’intento di servire da referenza per i prossimi anni. Il documento discute lo stato degli studi teorici, includendo le più recenti stime della sezione di produzione di coppie di bosoni di Higgs, sviluppi sulle teorie di campo efficaci, e studi su specifici scenari di nuova fisica che possono contribuire alla produzione di due bosoni di Higgs. Sono presentati i più recenti risultati sperimentali sulle ricerche di coppie di bosoni di Higgs e sui limiti diretti e indiretti al termine di auto-interazione, ottenuti al Large Hadron Collider di Ginevra, con una panoramica delle tecniche sperimentali. Infine, sono discusse le capacità dei collisionatori futuri di determinare il termine di auto-interazione del bosone di Higgs. Questo lavoro è iniziato come raccolta di contributi della conferenza “Di-Higgs ai Colliders”, che ha avuto luogo a Fermilab dal 4 al 9 settembre 2018, ma gli argomenti discussi vanno al di là di quelli presentati alla conferenza, includendo ulteriori sviluppi.
Astrophysical observations implying the existence of Dark Matter and Dark Energy, which are not described by the Standard Model (SM) of particle physics, have led to extensions of the SM predicting new particles that could be directly produced at the Large Hadron Collider (LHC) at CERN. Based on 2015 and 2016 ATLAS proton-proton collision data, this thesis presents searches for the supersymmetric partner of the top quark, for Dark Matter, and for DarkEnergy, in signatures with jets and missing transverse energy. Muon detection is key to some of the most important LHC physics results, including the discovery of the Higgs boson and the measurement of its properties. The efficiency with which muons can be detected with the ATLAS detector is measured using Z boson decays. The performance of high-precision Monitored Drift Tube muon chambers under background rates similar to the ones expected for the High Luminosity-LHC is studied.