Electroweak Physics at the Large Hadron Collider with the ATLAS Detector

Electroweak Physics at the Large Hadron Collider with the ATLAS Detector

Author: Elodie Resseguie

Publisher: Springer Nature

Published: 2020-11-03

Total Pages: 336

ISBN-13: 3030570169

DOWNLOAD EBOOK

This thesis discusses searches for electroweakly produced supersymmetric partners of the gauge and the Higgs bosons (gauginos and higgsinos) decaying to multiple leptons, using pp collisions at sqrt(s) = 13 TeV. The thesis presents an in-depth study of multiple searches, as well as the first 13 TeV cross section measurement for the dominant background in these searches, WZ production. Two searches were performed using 36.1/fb of data: the gaugino search, which makes use of a novel kinematic variable, and the higgsino search, which produced the first higgsino limits at the LHC. A search using 139/fb of data makes use of a new technique developed in this thesis to cross check an excess of data above the background expectation in a search using a Recursive Jigsaw Reconstruction technique. None of the searches showed a significant excess of data, and limits were expanded with respect to previous results. These searches will benefit from the addition of luminosity during HL-LHC; however, the current detector will not be able to withstand the increase in radiation. Electronics for the detector upgrade are tested and irradiated to ensure their performance.


The Search for Supersymmetry in Hadronic Final States Using Boosted Object Reconstruction

The Search for Supersymmetry in Hadronic Final States Using Boosted Object Reconstruction

Author: Giordon Stark

Publisher: Springer Nature

Published: 2020-03-13

Total Pages: 263

ISBN-13: 3030345483

DOWNLOAD EBOOK

This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.


Third generation SUSY and t ̄t +Z production

Third generation SUSY and t ̄t +Z production

Author: Josh McFayden

Publisher: Springer

Published: 2014-06-06

Total Pages: 190

ISBN-13: 3319071912

DOWNLOAD EBOOK

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.


Phenomena Beyond the Standard Model: What Do We Expect for New Physics to Look Like?

Phenomena Beyond the Standard Model: What Do We Expect for New Physics to Look Like?

Author: Roman Pasechnik

Publisher: Frontiers Media SA

Published: 2020-09-03

Total Pages: 180

ISBN-13: 2889639908

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


A Search for Displaced Leptons in the ATLAS Detector

A Search for Displaced Leptons in the ATLAS Detector

Author: Lesya Horyn

Publisher: Springer Nature

Published: 2022-02-07

Total Pages: 146

ISBN-13: 3030916723

DOWNLOAD EBOOK

This thesis presents a search for long-lived particles decaying into displaced electrons and/or muons with large impact parameters. This signature provides unique sensitivity to the production of theoretical lepton-partners, sleptons. These particles are a feature of supersymmetric theories, which seek to address unanswered questions in nature. The signature searched for in this thesis is difficult to identify, and in fact, this is the first time it has been probed at the Large Hadron Collider (LHC). It covers a long-standing gap in coverage of possible new physics signatures. This thesis describes the special reconstruction and identification algorithms used to select leptons with large impact parameters and the details of the background estimation. The results are consistent with background, so limits on slepton masses and lifetimes in this model are calculated at 95% CL, drastically improving on the previous best limits from the Large Electron Positron Collider (LEP).


Weak Scale Supersymmetry

Weak Scale Supersymmetry

Author: Howard Baer

Publisher: Cambridge University Press

Published: 2023-01-31

Total Pages: 557

ISBN-13: 1009289845

DOWNLOAD EBOOK

This OA text develops the basic concepts of supersymmetry for experimental and phenomenological particle physicists and graduate students.


The Large Hadron Collider

The Large Hadron Collider

Author: Thomas Schörner-Sadenius

Publisher: Springer

Published: 2015-05-15

Total Pages: 554

ISBN-13: 3319150014

DOWNLOAD EBOOK

This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.


Theory And Phenomenology Of Sparticles: An Account Of Four-dimensional N=1 Supersymmetry In High Energy Physics

Theory And Phenomenology Of Sparticles: An Account Of Four-dimensional N=1 Supersymmetry In High Energy Physics

Author: Manuel Drees

Publisher: World Scientific

Published: 2005-01-18

Total Pages: 582

ISBN-13: 9814495344

DOWNLOAD EBOOK

Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.


Lepton Dipole Moments

Lepton Dipole Moments

Author: B. Lee Roberts

Publisher: World Scientific

Published: 2010

Total Pages: 772

ISBN-13: 9814271845

DOWNLOAD EBOOK

This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics. Sample Chapter(s). Chapter 1: Historical Introduction to Electric and Mangnetic Moments (367 KB). Contents: Historical Introduction (B L Roberts); Electromagnetic Dipole Moments and New Physics (A Czarnecki & W J Marciano); Lepton g OCo 2 from 1947 to Present (T Kinoshita); Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron (S Laporta & E Remiddi); Measurements of the Electron Magnetic Moment (G Gabrielse); Determining the Fine Structure Constant (G Gabrielse); Helium Fine Structure Theory for the Determination of (K Pachucki & J Sapirstein); Hadronic Vacuum Polarization and the Lepton Anomalous Magnetic Moments (M Davier); The Hadronic Light-by-Light Contribution to a, e (J Prades et al.); General Prescriptions for One-loop Contributions to a e, (K R Lynch); Measurement of the Muon ( g OCo 2) Value (J P Miller et al.); Muon ( g OCo 2) and Physics Beyond the Standard Model (D StAckinger); Probing CP Violation with Electric Dipole Moments (M Pospelov & A Ritz); The Electric Dipole Moment of the Electron (E D Commins & D DeMille); Neutron EDM Experiments (S K Lamoreaux & R Golub); Nuclear Electric Dipole Moments (W C Griffith et al.); EDM Measurements in Storage Rings (B L Roberts et al.); Models of Lepton Flavor Violation (Y Okada); Search for the Charged Lepton-Flavor-Violating Transition Moments l OaAE l OC (Y Kuno). Readership: Researchers and graduate students in particle physics, atomic physics and nuclear physics, as well as experts working in the field


The Anomalous Magnetic Moment of the Muon

The Anomalous Magnetic Moment of the Muon

Author: Fred Jegerlehner

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 433

ISBN-13: 3540726330

DOWNLOAD EBOOK

This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.