This proceedings volume contains the latest developments in particle physics in collider experiments. The contributions cover new results such as the production of quark-gluon plasma in the heavy-ion collider, the new techniques for precision measurement at low energies, and the status of neutrino physics at various laboratories including the new facilities that are at the planning stage.
This proceedings volume contains the latest developments in particle physics in collider experiments. The contributions cover new results such as the production of quark-gluon plasma in the heavy-ion collider, the new techniques for precision measurement at low energies, and the status of neutrino physics at various laboratories including the new facilities that are at the planning stage.
The Standard Model of particle physics is extremely successful in describing nature. It is, however, incomplete in one major way: the masses of gauge bosons and fermions enter the Standard Model through the Higgs mechanism. That is completely satisfactory technically, but it is not understood physically. We do not yet know what nature really does to give mass to particles. Understanding Higgs physics is necessary in order to complete the Standard Model, and to learn how to extend it and improve its foundations.This book is a collection of current work and thinking about these questions by active workers. It speculates about what form the answers will take, as well as updates and extends previous books and reviews. Some chapters emphasize theoretical questions, some focus on connections with other areas of physics, and some discuss how we can get data to uncover nature's solution. This second edition adds information and insights from the last five years, including the recent indirect but statistically significant evidence for the existence of a Higgs boson from precision measurements. It contains contributions from Blondel, Quiros, Haber, Pokorski, Dawson, Janot, Mrenna, Gunion, Ibanez, Ross, Bigi, Carena, Wagner, Georgi, Chanowitz, Yuan, Hill, and others.
This important book covers topics that are of major interest to the high energy physics community, including the most recent results from flavour factories, dark matter and neutrino physics. In addition, it considers future high energy machines.
PASCOS is an interdisciplinary symposium on the interface of of Particle physics, String theory and Cosmology. Over the past two decades these three disciplines have increasingly become closer. Historically there was always a strong overlap between particle physics and cosmology. This connection has become even stronger with the realization that some of the fundamental issues in cosmology such as the presence of dark matter and dark energy may possibly find a resolution only via new theories of particle physics. At the same time string theory has begun to play an increasingly important role in particle physics as a possible framework for building unified models of particle interaction including gravity. In recent years we have seen an increasing overlap between cosmology and string theory and currently the area of string cosmology is one of the most active fields of research. PASCOS 2005 aimed to provide coherent discussions of recent developments on the interface of the three disciplines and also on their interconnections. In particular, superstring aspects in low energy particle theory (SUSY) and cosmological applications (moduli stabilization) are extensively covered in this volume. Topics include dark matter and dark energy, baryogenesis, flavor and CP violation, neutrino physics, supersymmetry and extra dimensions, flux compactification, string model building, as well as brane cosmology.
This book constitutes the proceedings of the XVIII International Symposium on Lepton-Photon Interactions. It contains 30 review papers on the latest developments by experts in the field. The subjects cover the structure of photons and hadrons, progress in QCD and diffraction, heavy quark (c, b, t) physics, electroweak precision measurements and tests, CP violation, neutrino physics, searches for new particles and phenomena, cosmology, progress in theory and physics at future colliders.
This volume constitutes the proceedings of the first conference on the specific subject of radiative corrections (quantum effects) to physical processes within the framework of the minimal supersymmetric standard model (MSSM). While there have been many conferences covering general aspects of supersymmetry, this one brought together leading experts on phenomenological aspects of SUSY and focused on the search for indirect effects of supersymmetric particles. Participants discussed the status and perspectives of the MSSM from the viewpoint of present and future high precision experiments at LEP, Tevatron, LHC and at a future NLC.