Search for the Higgs Boson

Search for the Higgs Boson

Author: John V. Lee

Publisher: Nova Publishers

Published: 2006

Total Pages: 158

ISBN-13: 9781594548611

DOWNLOAD EBOOK

The Higgs boson is an undiscovered elementary particle, thought to be a vital piece of the closely fitting jigsaw of particle physics. Like all particles, it has wave properties akin to those ripples on the surface of a pond which has been disturbed; indeed, only when the ripples travel as a well defined group is it sensible to speak of a particle at all. In quantum language the analogue of the water surface which carries the waves is called a field. Each type of particle has its own corresponding field. The Higgs field is a particularly simple one -- it has the same properties viewed from every direction, and in important respects in indistinguishable from empty space. Thus physicists conceive of the Higgs field being "switched on", pervading all of space and endowing it with "grain" like that of a plank of wood. The direction of the grain in undetectable, and only becomes important once the Higgs' interactions with other particles are taken into account. for instance, particles call vector bosons can travel with the grain, in which case they move easily for large distances and may be observed as photons - that is, particles of light that we can see or record using a camera; or against, in which case their effective range is much shorter, and we call them W or Z particles. These play a central role in the physics of nuclear reactions, such as those occurring in the core of the sun. The Higgs field enables us to view these apparently unrelated phenomenon as two sides of the same coin; both may be described in terms of the properties of the same vector bosons. When particles of matter such as electrons or quarks (elementary constituents of protons and neutrons, which in turn constitute the atomic nucleus) travel through the grain, they are constantly flipped "head-over-heels". this forces them to move more slowly than their natural speed, that of light, by making them heavy.


Search for Higgs Boson Pair Production in the bb̅ τ+ τ- Decay Channel

Search for Higgs Boson Pair Production in the bb̅ τ+ τ- Decay Channel

Author: Luca Cadamuro

Publisher: Springer

Published: 2018-12-06

Total Pages: 283

ISBN-13: 3030040550

DOWNLOAD EBOOK

This thesis presents innovative contributions to the CMS experiment in the new trigger system for the restart of the LHC collisions in Run II, as well as original analysis methods and important results that led to official publications of the Collaboration. The author's novel reconstruction algorithms, deployed on the Field-Programmable Gate Arrays of the new CMS trigger architecture, have brought a gain of over a factor 2 in efficiency for the identification of tau leptons, with a very significant impact on important H boson measurements, such as its decays to tau lepton pairs and the search for H boson pair production. He also describes a novel analysis of HH → bb tautau, a high priority physics topic in a difficult channel. The original strategy, optimisation of event categories, and the control of the background have made the result one of the most sensitive concerning the self-coupling of the Higgs boson among all possible channels at the LHC.


Supersymmetry Beyond Minimality

Supersymmetry Beyond Minimality

Author: Shaaban Khalil

Publisher: CRC Press

Published: 2017-12-06

Total Pages: 394

ISBN-13: 1315350874

DOWNLOAD EBOOK

Supersymmetry (SUSY) is one of the most important ideas ever conceived in particle physics. It is a symmetry that relates known elementary particles of a certain spin to as yet undiscovered particles that differ by half a unit of that spin (known as Superparticles). Supersymmetric models now stand as the most promising candidates for a unified theory beyond the Standard Model (SM). SUSY is an elegant and simple theory, but its existence lacks direct proof. Instead of dismissing supersymmetry altogether, Supersymmetry Beyond Minimality: from Theory to Experiment suggests that SUSY may exist in more complex and subtle manifestation than the minimal model. The book explores in detail non-minimal SUSY models, in a bottom-up approach that interconnects experimental phenomena in the fermionic and bosonic sectors. The book considers with equal emphasis the Higgs and Superparticle sectors, and explains both collider and non-collider experiments. Uniquely, the book explores charge/parity and lepton flavour violation. Supersymmetry Beyond Minimality: from Theory to Experiment provides an introduction to well-motivated examples of such non-minimal SUSY models, including the ingredients for generating neutrino masses and/or relaxing the tension with the heavily constraining Large Hadron Collider (LHC) data. Examples of these scenarios are explored in depth, in particular the discussions on Next-to-Minimal Supersymmetric SM (NMSSM) and B-L Supersymmetric SM (BLSSM).


The Search and Discovery of the Higgs Boson

The Search and Discovery of the Higgs Boson

Author: Luis Roberto Flores Castillo

Publisher: Morgan & Claypool Publishers

Published: 2016-01-01

Total Pages: 76

ISBN-13: 1681740788

DOWNLOAD EBOOK

This book provides a general description of the search for and discovery of the Higgs boson (particle) at CERN’s Large Hadron Collider. The goal is to provide a relatively brief overview of the issues, instruments and techniques relevant for this search; written by a physicist who was directly involved. The Higgs boson mat be the one particle that was studied the most before its discovery and the story from postulation in 1964 to detection in 2012 is a fascinating one. The story is told here while detailing the fundamentals of particle physics.


Looking Inside Jets

Looking Inside Jets

Author: Simone Marzani

Publisher: Springer

Published: 2019-05-11

Total Pages: 210

ISBN-13: 3030157091

DOWNLOAD EBOOK

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.


Top Quark Physics at Hadron Colliders

Top Quark Physics at Hadron Colliders

Author: Arnulf Quadt

Publisher: Springer Science & Business Media

Published: 2007-08-16

Total Pages: 166

ISBN-13: 3540710604

DOWNLOAD EBOOK

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.


The Higgs Hunter's Guide

The Higgs Hunter's Guide

Author: John F. Gunion

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 333

ISBN-13: 0429976070

DOWNLOAD EBOOK

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.


Phenomena Beyond the Standard Model: What Do We Expect for New Physics to Look Like?

Phenomena Beyond the Standard Model: What Do We Expect for New Physics to Look Like?

Author: Roman Pasechnik

Publisher: Frontiers Media SA

Published: 2020-09-03

Total Pages: 180

ISBN-13: 2889639908

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Search for tt̄H Production in the H → bb̅ Decay Channel

Search for tt̄H Production in the H → bb̅ Decay Channel

Author: Marcel Rieger

Publisher: Springer Nature

Published: 2021-02-25

Total Pages: 217

ISBN-13: 3030653803

DOWNLOAD EBOOK

In 1964, a mechanism explaining the origin of particle masses was proposed by Robert Brout, François Englert, and Peter W. Higgs. 48 years later, in 2012, the so-called Higgs boson was discovered in proton-proton collisions recorded by experiments at the LHC. Since then, its ability to interact with quarks remained experimentally unconfirmed. This book presents a search for Higgs bosons produced in association with top quarks tt̄H in data recorded with the CMS detector in 2016. It focuses on Higgs boson decays into bottom quarks H → bb̅ and top quark pair decays involving at least one lepton. In this analysis, a multiclass classification approach using deep learning techniques was applied for the first time. In light of the dominant background contribution from tt̄ production, the developed method proved to achieve superior sensitivity with respect to existing techniques. In combination with searches in different decay channels, the presented work contributed to the first observations of tt̄H production and H → bb̅ decays.