This long-standing symposia series has become the premier, international forum for scientific and engineering issues related to all levels and types of radioactive wastes and their management. Topics include: fuel cladding and spent nuclear fuel; container fabrication and corrosion; performance assessment; repository performance; radionuclide sorption and transport; cement-based materials and waste containment; corrosion of ceramic wasteforms; structure and characterization of ceramics; radiation effects; natural analogs; wasteform characterization and processing; and corrosion and characterization of glass wasteforms.
During late 1978, a symposium entitled "Science Underlying Radioactive Waste Management" was one component of the Annual Meet ing of the Materials Research Society held in Boston, Massachusetts. The purpose of this Symposium was to bring together for the first time the entire range of sciences that form the basis for the treatment, solidification and isolation of radioactive wastes. Some 79 papers were presented to an international audience of over 300. The Symposium was such an impressive success that another will be held at the 1979 Annual Meeting of the Materials Research Society. The proceedings of the forthcoming symposium will also be published and it is for this reason that the present volume has been desig nated Volume 1. The scope of the Symposium was defined by the following steer ing committee: Rustum Roy, The Pennsylvania State University (Chairman) Richard S. Claassen, Sandia Laboratories Don Ferguson, Oak Ridge National Laboratory Victor I. Spitsyn, U.S.S.R. Academy of Sciences, Moscow David B. Stewart, United States Geological Survey Torbjorn Westermark, Royal Institute of Technology, Stockholm. The program was organized by the following committee: Gregory J. McCarthy, The Pennsylvania State University (Cha- man) Harry C. Burkholder, Battelle Memorial Institute Arnold M. Friedman~ Argonne National Laboratory Werner Lutze, Hahn-Meitner Institut, Berlin John G. Moore, Oak Ridge National Laboratory Robert W. Potter, II, United States Geological Survey Richard L. Schwoebe1, Sandia Laboratories Roger W. Staehle, Ohio State University.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field
This book serves as a reference for engineers, scientists, and students concerned with the use of materials in applications where reliability and resistance to corrosion are important. It updates the coverage of its predecessor, including coverage of: corrosion rates of steel in major river systems and atmospheric corrosion rates, the corrosion behavior of materials such as weathering steels and newer stainless alloys, and the corrosion behavior and engineering approaches to corrosion control for nonmetallic materials. New chapters include: high-temperature oxidation of metals and alloys, nanomaterials, and dental materials, anodic protection. Also featured are chapters dealing with standards for corrosion testing, microbiological corrosion, and electrochemical noise.
Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.
Radioactive wastes are generated from a wide range of sources, including the power industry, and medical and scientific research institutions, presenting a range of challenges in dealing with a diverse set of radionuclides of varying concentrations. Conditioning technologies are essential for the encapsulation and immobilisation of these radioactive wastes, forming the initial engineered barrier required for their transportation, storage and disposal. The need to ensure the long term performance of radioactive waste forms is a key driver of the development of advanced conditioning technologies.The Handbook of advanced radioactive waste conditioning technologies provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes. The book opens with an introductory chapter on radioactive waste characterisation and selection of conditioning technologies. Part one reviews the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction, incineration and plasma treatment, as well as encapsulation methods such as cementation, calcination and vitrification. This coverage is extended in part two, with in-depth reviews of the development of advanced materials for radioactive waste conditioning, including geopolymers, glass and ceramic matrices for nuclear waste immobilisation, and waste packages and containers for disposal. Finally, part three reviews the long-term performance assessment and knowledge management techniques applicable to both spent nuclear fuels and solid radioactive waste forms.With its distinguished international team of contributors, the Handbook of advanced radioactive waste conditioning technologies is a standard reference for all radioactive waste management professionals, radiochemists, academics and researchers involved in the development of the nuclear fuel cycle. - Provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes - Explores radioactive waste characterisation and selection of conditioning technologies including the development of advanced materials for radioactive waste conditioning - Assesses the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction
The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.