Science Data Booklet

Science Data Booklet

Author: Manjunath.R

Publisher: Manjunath.R

Published: 2020-07-11

Total Pages: 1221

ISBN-13:

DOWNLOAD EBOOK

The Scientific Compendium: A Comprehensive Reference for Data and Formulas The "Science Data Booklet" is an essential companion for students, researchers, and science enthusiasts alike, providing a comprehensive collection of key scientific data and information. This meticulously curated reference book serves as a treasure trove of facts, equations, and formulas from various scientific disciplines, designed to empower readers with the tools they need to excel in their scientific pursuits. Inside this invaluable compendium, readers will discover a wealth of information spanning the realms of physics, chemistry, biology, astronomy, and more. From fundamental constants to conversion factors, this book offers a concise and easily accessible compilation of scientific knowledge that is essential for scientific investigations, experiments, and calculations. Whether you are a student preparing for exams, a researcher seeking quick access to vital data, or a science enthusiast eager to delve deeper into the world of scientific knowledge, this book is your indispensable companion. With the help of this book, you can access a plethora of scientific knowledge at your fingertips, anytime and anywhere. In a world increasingly driven by scientific advancements, the "Science Data Booklet" serves as an invaluable resource for anyone seeking to navigate the complexities of scientific data. This book is not only a reference guide but also a catalyst for curiosity, inspiring readers to explore the wonders of the natural world and embark on their own scientific journeys. Unlock the power of scientific knowledge with the "Science Data Booklet" and embark on a fascinating voyage of discovery, innovation, and understanding.


Python Data Science Handbook

Python Data Science Handbook

Author: Jake VanderPlas

Publisher: "O'Reilly Media, Inc."

Published: 2016-11-21

Total Pages: 609

ISBN-13: 1491912138

DOWNLOAD EBOOK

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms


Foundations of Data Science

Foundations of Data Science

Author: Avrim Blum

Publisher: Cambridge University Press

Published: 2020-01-23

Total Pages: 433

ISBN-13: 1108617360

DOWNLOAD EBOOK

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.


The Data Science Handbook

The Data Science Handbook

Author: Carl Shan

Publisher:

Published: 2015-05-03

Total Pages:

ISBN-13: 9780692434871

DOWNLOAD EBOOK

The Data Science Handbook is a curated collection of 25 candid, honest and insightful interviews conducted with some of the world's top data scientists.In this book, you'll hear how the co-creator of the term 'data scientist' thinks about career and personal success. You'll hear from a young woman who created her own data scientist curriculum, subsequently landing her a role in the field. Readers of this book will be left with war stories, wisdom and


Introduction to Data Science

Introduction to Data Science

Author: Laura Igual

Publisher: Springer

Published: 2017-02-22

Total Pages: 227

ISBN-13: 3319500171

DOWNLOAD EBOOK

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.


Data Science and Machine Learning

Data Science and Machine Learning

Author: Dirk P. Kroese

Publisher: CRC Press

Published: 2019-11-20

Total Pages: 538

ISBN-13: 1000730778

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code


Data Analysis for Social Science

Data Analysis for Social Science

Author: Elena Llaudet

Publisher: Princeton University Press

Published: 2022-11-29

Total Pages: 256

ISBN-13: 0691199434

DOWNLOAD EBOOK

"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--


Envisioning Information

Envisioning Information

Author: Edward R. Tufte

Publisher:

Published: 1990

Total Pages: 356

ISBN-13: 9780961392116

DOWNLOAD EBOOK

Escaping flatland -- Micro/macro readings -- Layering and separation -- Small multiples -- Color and information -- Narratives and space and time -- Epilogue.


The Cambridge Handbook of Physics Formulas

The Cambridge Handbook of Physics Formulas

Author: Graham Woan

Publisher: Cambridge University Press

Published: 2000-07-10

Total Pages: 236

ISBN-13: 9780521575072

DOWNLOAD EBOOK

The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved. The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving or exam revision. All students and professionals in physics, applied mathematics, engineering and other physical sciences will want to have this essential reference book within easy reach.


Science for Policy Handbook

Science for Policy Handbook

Author: Vladimir Sucha

Publisher: Elsevier

Published: 2020-07-29

Total Pages: 288

ISBN-13: 0128225963

DOWNLOAD EBOOK

Science for Policy Handbook provides advice on how to bring science to the attention of policymakers. This resource is dedicated to researchers and research organizations aiming to achieve policy impacts. The book includes lessons learned along the way, advice on new skills, practices for individual researchers, elements necessary for institutional change, and knowledge areas and processes in which to invest. It puts co-creation at the centre of Science for Policy 2.0, a more integrated model of knowledge-policy relationship. Covers the vital area of science for policymaking Includes contributions from leading practitioners from the Joint Research Centre/European Commission Provides key skills based on the science-policy interface needed for effective evidence-informed policymaking Presents processes of knowledge production relevant for a more holistic science-policy relationship, along with the types of knowledge that are useful in policymaking