ACID–BASE CHEMISTRY WATER TECHNOLOGY CHEMISTRY OF CARBON COMPOUNDS HIGH POLYMER SCOLLOIDSDYES AND PIGMENTSVARNISHES AND LACQUERS PRINTING INKSPAPER TECHNOLOGY ADHESIVES CHEMISTRY OF PHOTOGRAPHY PHOTO POLYMER PLATES METALS FOR PLATE MAKING PRESS ROLLERS FOUNTAIN SOLUTIONS Review Questions Additional Reading Glossary Index
Three-dimensional printing, or additive manufacturing, is an emerging manufacturing process. Research and development are being performed worldwide to provide a better understanding of the science and technology of 3D printing to make high-quality parts in a cost-effective and time-efficient manner. This book includes contemporary, unique, and impactful research on 3D printing from leading organizations worldwide.
3D Concrete Printing Technology provides valuable insights into the new manufacturing techniques and technologies needed to produce concrete materials. In this book, the editors explain the concrete printing process for mix design and the fresh properties for the high-performance printing of concrete, along with commentary regarding their extrudability, workability and buildability. This is followed by a discussion of three large-scale 3D printings of ultra-high performance concretes, including their processing setup, computational design, printing process and materials characterization. Properties of 3D-printed fiber-reinforced Portland cement paste and its flexural and compressive strength, density and porosity and the 3D-printing of hierarchical materials is also covered. - Explores the factors influencing the mechanical properties of 3D printed products out of magnesium potassium phosphate cement material - Includes methods for developing Concrete Polymer Building Components for 3D Printing - Provides methods for formulating geopolymers for 3D printing for construction applications
Fundamentals of 3D Food Printing and Applications provides an update on this emerging technology that can not only create complex edible shapes, but also enable the alteration of food texture and nutritional content required by specific diets. This book discusses 3D food printing technologies and their working mechanisms within a broad spectrum of application areas, including, but not limited to, the development of soft foods and confectionary designs. It provides a unique and contemporary guide to help correlate supply materials (edible inks) and the technologies (e.g., extrusion and laser based) used during the construction of computer-aided 3D shapes. Users will find a great reference that will help food engineers and research leaders in food science understand the characteristics of 3D food printing technologies and edible inks. - Details existing 3D food printing techniques, with an in-depth discussion on the mechanisms of formation of self-supporting layers - Includes the effects of flow behaviour and viscoelastic properties of printing materials - Presents strategies to enhance printability, such as the incorporation of hydrocolloids and lubricant enhancers - 3D printing features of a range of food materials, including cereal based, insect enriched, fruits and vegetables, chocolate and dairy ingredients - Business development for chocolate printing and the prospects of 3D food printing at home for domestic applications - Prosumer-driven 3D food printing - Safety and labelling of 3D printed food
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case. - Provides a thorough, clear understanding of polymer preparation techniques and 3D and 4D printing processes, with a view to specific applications - Examines synthesis, formation methodology, the dispersion of fillers, characterization, properties, and performance of polymer nanocomposites - Explores the possibilities of 4D printing, covering the usage of stimuli responsive hydrogels and shape memory polymers
4D Printing: Fundamentals and Applications explores both autonomic and non-autonomic systems with different stimulus such as temperature, current, moisture, light and sound. In addition, the fifth dimensional aspect using more than one stimulus is outlined for additive manufacturing processes. The book presents both an introduction to the basic understanding of hybrid processes and explores the physics behind the process (in the form of derivation and numerical problems). For the field engineer, applicable codes and standards for each hybrid process are provided. Lastly, case studies are included in each section to provide the reader with a model to explore future research directions. - Begins with the fundamentals of the hybrid additive manufacturing process - Presents a discussion of the physics behind smart material functioning in hybrid additive manufacturing - Includes real world case studies on 4D and 5D printing, as well as a look at future research dimensions
This book provides an overview of the newly emerged and highly interdisciplinary field of printed electronics • Provides an overview of the latest developments and research results in the field of printed electronics • Topics addressed include: organic printable electronic materials, inorganic printable electronic materials, printing processes and equipments for electronic manufacturing, printable transistors, printable photovoltaic devices, printable lighting and display, encapsulation and packaging of printed electronic devices, and applications of printed electronics • Discusses the principles of the above topics, with support of examples and graphic illustrations • Serves both as an advanced introductory to the topic and as an aid for professional development into the new field • Includes end of chapter references and links to further reading
Materials for Additive Manufacturing covers the materials utilized in the additive manufacturing field, including polymers, metals, alloys and ceramic materials. A conceptual overview of the preparation and characterization of the materials and their processing is given, beginning with theoretical aspects that help readers better understand fundamental concepts. Emerging applications in medicine, aerospace, automotive, artwork and rapid manufacturing are also discussed. This book provides a comprehensive overview of materials, along with rapid prototyping technologies. - Discusses the preparation and characterization of materials used for additive manufacturing - Provides descriptions of microstructures and properties of the parts produced by additive manufacturing - Includes recent industrial applications of materials processed in additive manufacturing