Scanning Probe Microscopy

Scanning Probe Microscopy

Author: Bert Voigtländer

Publisher: Springer

Published: 2015-02-24

Total Pages: 375

ISBN-13: 3662452405

DOWNLOAD EBOOK

This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.


Scanning Probe Microscopy

Scanning Probe Microscopy

Author: Bert Voigtländer

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9783662452417

DOWNLOAD EBOOK

This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.


Design, Modeling and Control of Nanopositioning Systems

Design, Modeling and Control of Nanopositioning Systems

Author: Andrew J. Fleming

Publisher: Springer

Published: 2014-05-15

Total Pages: 418

ISBN-13: 331906617X

DOWNLOAD EBOOK

Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control. Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (including an appreciation of iterative learning control). Performance issues are given importance as are problems limiting that performance such as hysteresis and noise which arise in the treatment of control and are then given chapter-length attention in their own right. The reader also learns about cost functions and other issues involved in command shaping, charge drives and electrical considerations. All concepts are demonstrated experimentally including by direct application to atomic force microscope imaging. Design, Modeling and Control of Nanopositioning Systems will be of interest to researchers in mechatronics generally and in control applied to atomic force microscopy and other nanopositioning applications. Microscope developers and mechanical designers of nanopositioning devices will find the text essential reading.


Scanning Probe Microscopy

Scanning Probe Microscopy

Author: Ernst Meyer

Publisher: Springer Nature

Published: 2021-05-31

Total Pages: 330

ISBN-13: 3030370895

DOWNLOAD EBOOK

Written by three leading experts in the field, this textbook describes and explains all aspects of the scanning probe microscopy. Emphasis is placed on the experimental design and procedures required to optimize the performance of the various methods. Scanning Probe Microscopy covers not only the physical principles behind scanning probe microscopy but also questions of instrumental designs, basic features of the different imaging modes, and recurring artifacts. The intention is to provide a general textbook for all types of classes that address scanning probe microscopy. Third year undergraduates and beyond should be able to use it for self-study or as textbook to accompany a course on probe microscopy. Furthermore, it will be valuable as reference book in any scanning probe microscopy laboratory. Novel applications and the latest important results are also presented, and the book closes with a look at the future prospects of scanning probe microscopy, also discussing related techniques in nanoscience. Ideally suited as an introduction for graduate students, the book will also serve as a valuable reference for practising researchers developing and using scanning probe techniques.


Scanning Force Microscopy of Polymers

Scanning Force Microscopy of Polymers

Author: G. Julius Vancso

Publisher: Springer Science & Business Media

Published: 2010-08-02

Total Pages: 258

ISBN-13: 3642012310

DOWNLOAD EBOOK

Scope of the Book Synthetic and natural polymers exhibit a complex structural and morphological hierarchy on multiple length scales [1], which determines their performance. Thus, research aiming at visualizing structure and morphology using a multitude of microscopy techniques has received considerable attention since the early days of polymer science and technology. Various well-developed techniques such as optical microscopy and different forms of electron microscopy (Scanning Electron Micr- copy, SEM; Transmission Electron Microscopy, TEM; Environmental Scanning Electron Microscopy, ESEM) allow one to view polymeric structure at different levels of magni?cation. These classical techniques, and their applications to po- mers, are well documented in the literature [2, 3]. The invention of Scanning Tunneling Microscopy (STM) inspired the devel- ment of Atomic Force Microscopy (AFM) and other forms of scanning proximity microscopes in the late 1980s [4, 5]. AFM, unlike STM, can be used to image n- conducting specimens such as polymers. In addition, AFM imaging is feasible in liquids, which has several advantages. Using liquid imaging cells the forces between specimen and AFM probe are drastically reduced, thus sample damage is prevented. In addition, the use of water as imaging medium opened up new applications aiming at imaging, characterizing, and analyzing biologically important systems.


Analytical Geomicrobiology

Analytical Geomicrobiology

Author: Janice P. L. Kenney

Publisher: Cambridge University Press

Published: 2019-07-18

Total Pages: 429

ISBN-13: 1107070333

DOWNLOAD EBOOK

A comprehensive handbook outlining state-of-the-art analytical techniques used in geomicrobiology, for advanced students, researchers and professional scientists.


Analytical Methods in Supramolecular Chemistry

Analytical Methods in Supramolecular Chemistry

Author: Christoph A. Schalley

Publisher: John Wiley & Sons

Published: 2012-09-25

Total Pages: 849

ISBN-13: 3527644148

DOWNLOAD EBOOK

The second edition of "Analytical Methods in Supramolecular Chemistry" comes in two volumes and covers a broad range of modern methods and techniques now used for investigating supramolecular systems, e. g. NMR spectroscopy, mass spectrometry, extraction methods, crystallography, single molecule spectroscopy, electrochemisty, and many more. In this second edition, tutorial inserts have been introduced, making the book also suitable as supplementary reading for courses on supramolecular chemistry. All chapters have been revised and updated and four new chapters have been added. A must-have handbook for Organic and Analytical Chemists, Spectroscopists, Materials Scientists, and Ph.D. Students in Chemistry. From reviews of the first edition: "This timely book should have its place in laboratories dealing with supramolecular objects. It will be a source of reference for graduate students and more experienced researchers and could induce new ideas on the use of techniques other than those usually used in the laboratory." Journal of the American Chemical Society (2008) VOL. 130, NO. 1 doi: 10.1021/ja0769649 "The book as a whole or single chapters will stimulate the reader to widen his horizon in chemistry and will help him to have new ideas in his research." Anal Bioanal Chem (2007) 389:2039-2040 DOI: 10.1007/s00216-007-1677-1


Scanning Probe Microscopes

Scanning Probe Microscopes

Author: K. S. Birdi

Publisher: CRC Press

Published: 2003-02-26

Total Pages: 441

ISBN-13: 1135516332

DOWNLOAD EBOOK

Scanning Probe Microscopes: Applications in Science and Technology explains, analyzes, and demonstrates the most widely used microscope in the family of microscopes -- the scanning probe microscope. Beginning with an introduction to the development of SPMs, the author introduces the basics of scanning tunneling and atomic force microscopes (STMs an


Scanning Electron Microscopy

Scanning Electron Microscopy

Author: Ludwig Reimer

Publisher: Springer

Published: 2013-11-11

Total Pages: 538

ISBN-13: 3540389679

DOWNLOAD EBOOK

Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.


Molecular Soft-Interface Science

Molecular Soft-Interface Science

Author: Mizuo Maeda

Publisher: Springer

Published: 2019-05-09

Total Pages: 219

ISBN-13: 4431568778

DOWNLOAD EBOOK

This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.