Saturation of the f-mode Instability in Neutron Stars

Saturation of the f-mode Instability in Neutron Stars

Author: Pantelis Pnigouras

Publisher: Springer

Published: 2018-09-25

Total Pages: 235

ISBN-13: 3319982583

DOWNLOAD EBOOK

This book presents a study of the saturation of unstable f-modes (fundamental modes) due to low-order nonlinear mode coupling. Since their theoretical prediction in 1934, neutron stars have remained among the most challenging objects in the Universe. Gravitational waves emitted by unstable neutron star oscillations can be used to obtain information about their inner structure, that is, the equation of state of dense nuclear matter. After its initial growth phase, the instability is expected to saturate due to nonlinear effects. The saturation amplitude of the unstable mode determines the detectability of the generated gravitational-wave signal, but also affects the evolution of the neutron star. The study shows that the unstable (parent) mode resonantly couples to pairs of stable (daughter) modes, which drain the parent’s energy and make it saturate via a mechanism called parametric resonance instability. Further, it calculates the saturation amplitude of the most unstable f-mode multipoles throughout their so-called instability windows.


Fourteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics, And Relativistic Field Theories - Proceedings Of The Mg14 Meeting On General Relativity (In 4 Parts)

Fourteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics, And Relativistic Field Theories - Proceedings Of The Mg14 Meeting On General Relativity (In 4 Parts)

Author: Massimo Bianchi

Publisher: World Scientific

Published: 2017-10-13

Total Pages: 4784

ISBN-13: 9813226617

DOWNLOAD EBOOK

The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons.Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics.The remaining volumes include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.


The Physics and Astrophysics of Neutron Stars

The Physics and Astrophysics of Neutron Stars

Author: Luciano Rezzolla

Publisher: Springer

Published: 2019-01-09

Total Pages: 825

ISBN-13: 3319976168

DOWNLOAD EBOOK

This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).


Gravitational-Wave Astronomy

Gravitational-Wave Astronomy

Author: Nils Andersson

Publisher:

Published: 2020

Total Pages: 680

ISBN-13: 0198568037

DOWNLOAD EBOOK

This introduction to gravitational waves and related astrophysics provides a bridge across the range of astronomy, physics and cosmology that comes into play when trying to understand the gravitational-wave sky. Key ideas are developed step by step, leading up to the technology that caught these faint whispers from the distant universe.


General Relativity, Cosmology and Astrophysics

General Relativity, Cosmology and Astrophysics

Author: Jiří Bičák

Publisher: Springer

Published: 2014-06-12

Total Pages: 534

ISBN-13: 3319063499

DOWNLOAD EBOOK

The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.


Nuclear Theory in the Age of Multimessenger Astronomy

Nuclear Theory in the Age of Multimessenger Astronomy

Author: Omar Benhar

Publisher: CRC Press

Published: 2024-07-03

Total Pages: 383

ISBN-13: 1040044743

DOWNLOAD EBOOK

Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interactions — over the widest range of densities occurring in the Universe. This book provides a self-contained account of neutron star properties, microscopic nuclear dynamics and the recent observational developments in multimessenger astronomy. It also discusses the unprecedented possibilities to shed light on long standing and fundamental issues, such as the validity of the description of matter in terms of pointlike baryons and leptons and the appearance of deconfined quarks in the high density regime. It will be of interest to researchers and advanced PhD students working in the fields of Astrophysics, Gravitational Physics, Nuclear Physics and Particle Physics. Key Features: Reviews state-of-the-art theoretical and experimental developments Self-contained and cross-disciplinary While being devoted to a very lively and fast developing field, the book fundamentally addresses methodological issues. Therefore, it will not be subject to fast obsolescence. Omar Benhar is an INFN Emeritus Research Director, and has been teaching Relativistic Quantum Mechanics, Quantum Electrodynamics and Structure of Compact Stars at “Sapienza” University of Rome for over twenty years. He has worked extensively in the United States, and since 2013 has served as an adjunct professor at the Center for Neutrino Physics of Virginia Polytechnic Institute and State University. Prof. Benhar has authored or co-authored three textbooks on Relativistic Quantum Mechanics, Gauge Theories, and Structure and Dynamics of Compact Stars, and published more than one hundred scientific papers on the theory of many-particle systems, the structure of compact stars and the electroweak interactions of nuclei. Alessandro Lovato is a physicist at Argonne National Laboratory and an INFN researcher in Trento. His research in theoretical nuclear physics focuses on consistently modeling the self-emerging properties of atomic nuclei and neutron-star matter in terms of the microscopic interactions among the constituent protons and neutrons. He has co-authored more than eighty scientific publications on the theory of many-particle systems, the structure of compact stars, and the electroweak interactions of nuclei. He is at the forefront of high-performance computing applied to solving the quantum many-body problem. Andrea Maselli is an Associate Professor at the Gran Sasso Science Institute, in L’Aquila, where he teaches Gravitation and Cosmology and Physics of Black Hole. His research focuses on strong gravity, which plays a crucial role in many astrophysical phenomena involving black hole and neutron stars, representing natural laboratories to test fundamental physics. Prof. Maselli has co-authored more than eighty scientific papers on the modelling of black holes and neutron stars in General Relativity and extension thereof, their gravitational wave emission, and on tests of gravity in the strong filed regime. He is active in various collaborations aimed at developing next generation of gravitational wave detectors, such as the LISA satellite, the Einstein Telescope, and the Lunar Gravitational Wave Antenna. Francesco Pannarale is an Associate Professor at “Sapienza” Univeristy of Rome, where he teaches Gravitational Waves, Compact Objects and Black Holes, Computing Methods for Physics, and Electromagnetism. His research interests are in gravitational-wave physics and multimessenger astronomy, and they range from modelling compact binary sources to data analysis. He has co-authored over one hundred and eighty scientific publications and was at the forefront of the joint observation of GW170817 and GRB 170817A. He is currently serving as co-chair of the LIGO-Virgo-KAGRA Data Analysis Council.


Rotating Relativistic Stars

Rotating Relativistic Stars

Author: John L. Friedman

Publisher: Cambridge University Press

Published: 2013-02-11

Total Pages: 435

ISBN-13: 1107310601

DOWNLOAD EBOOK

The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.


Handbook of Gravitational Wave Astronomy

Handbook of Gravitational Wave Astronomy

Author: Cosimo Bambi

Publisher: Springer Nature

Published: 2022-07-02

Total Pages: 1895

ISBN-13: 9811643067

DOWNLOAD EBOOK

This handbook provides an updated comprehensive description of gravitational wave astronomy. In the first part, it reviews gravitational wave experiments, from ground and space based laser interferometers to pulsar timing arrays and indirect detection from the cosmic microwave background. In the second part, it discusses a number of astrophysical and cosmological gravitational wave sources, including black holes, neutron stars, possible more exotic objects, and sources in the early Universe. The third part of the book reviews the methods to calculate gravitational waveforms. The fourth and last part of the book covers techniques employed in gravitational wave astronomy data analysis. This book represents both a valuable resource for graduate students and an important reference for researchers in gravitational wave astronomy.


Gravitational Waves

Gravitational Waves

Author: Michele Maggiore

Publisher: Oxford University Press

Published: 2018-03-09

Total Pages: 820

ISBN-13: 0191074470

DOWNLOAD EBOOK

The two-volume book Gravitational Waves provides a comprehensive and detailed account of the physics of gravitational waves. While Volume 1 is devoted to the theory and experiments, Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematizing a large body of theoretical developments that have taken place over the last decades. The second volume also includes a detailed discussion of the first direct detections of gravitational waves. In the author's typical style, the theoretical results are generally derived afresh, clarifying or streamlining the existing derivations whenever possible, and providing a coherent and consistent picture of the field. The first volume of Gravitational Waves , which appeared in 2007, has established itself as the standard reference in the field. The scientific community has eagerly awaited this second volume. The recent direct detection of gravitational waves makes the topics in this book particularly timely.


Fluid Flows to Black Holes

Fluid Flows to Black Holes

Author: D. J. Saikia

Publisher: World Scientific

Published: 2011

Total Pages: 310

ISBN-13: 9814374776

DOWNLOAD EBOOK

This unique book contains a biographical portrait, accounts of Chandrasekhar's role and impact on modern science, historical perspectives and personal reminiscences, several of which appeared in Physics Today, and reviews by leading experts in areas which Prof. Chandrasekhar pioneered. The reviews, which appeared in the Bulletin of the Astronomical Society of India, are either based on papers presented by scholars in the Chandrasekhar Centennial Symposium at the University of Chicago during 15OCo17 October 2010, or were additional reviews covering topics not represented at the conference by other distinguished astrophysicists. It provides a glimpse of some of the most exciting areas of modern astrophysics as a tribute to Prof Chandrasekhar on his birth centenary.