SAS Survival Analysis Techniques for Medical Research

SAS Survival Analysis Techniques for Medical Research

Author: Alan B. Cantor

Publisher: SAS Press

Published: 2003

Total Pages: 0

ISBN-13: 9781590471357

DOWNLOAD EBOOK

If you are new to survival analysis or want to expand your capabilities in this area, you'll benefit from Alan Cantor's SAS Survival Analysis Techniques for Medical Research, Second Edition, which presents the theory and methods of survival analysis along with excellent discussions of the SAS procedures used to implement the methods described. New features of the second edition include a discussion of permutation and randomization tests; a discussion of the use of data imputation; an expanded discussion of power for Cox regression; descriptions of the new features of SAS 9, such as confidence bands for the Kaplan-Meier curve; appendixes that cover mathematical and statistical background topics needed in survival analysis; and student exercises. The new features, along with several useful macros and numerous examples, make this a suitable textbook for a course in survival analysis for biostatistics majors and majors in related fields. This book excels at presenting complex ideas in a way that enables those without a strong technical background to understand and apply the concepts and techniques.


Survival Analysis Using SAS

Survival Analysis Using SAS

Author: Paul D. Allison

Publisher: SAS Institute

Published: 2010-03-29

Total Pages: 337

ISBN-13: 1599948842

DOWNLOAD EBOOK

Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data. This book is part of the SAS Press program.


Survival Analysis

Survival Analysis

Author: John P. Klein

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 508

ISBN-13: 1475727283

DOWNLOAD EBOOK

Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.


Modelling Survival Data in Medical Research

Modelling Survival Data in Medical Research

Author: D. Collett

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781003282525

DOWNLOAD EBOOK

"Fourth edition has new chapters on Bayesian survival analysis and use of the R software. Chapters extensively revised, expanded to add new material on topics that include methods for assessing predictive ability of a model, joint models for longitudinal and survival data, modern methods for the analysis of interval-censored survival data"--


Applied Medical Statistics Using SAS

Applied Medical Statistics Using SAS

Author: Geoff Der

Publisher: CRC Press

Published: 2012-10-01

Total Pages: 539

ISBN-13: 1439867984

DOWNLOAD EBOOK

Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudi


Analysis of Clinical Trials Using SAS

Analysis of Clinical Trials Using SAS

Author: Alex Dmitrienko

Publisher: SAS Institute

Published: 2017-07-17

Total Pages: 455

ISBN-13: 1635261449

DOWNLOAD EBOOK

Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.


Applied Survival Analysis

Applied Survival Analysis

Author: David W. Hosmer, Jr.

Publisher: John Wiley & Sons

Published: 2011-09-23

Total Pages: 285

ISBN-13: 1118211588

DOWNLOAD EBOOK

THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.


Business Survival Analysis Using SAS

Business Survival Analysis Using SAS

Author: Jorge Ribeiro

Publisher: Independently Published

Published: 2022-01-27

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

Solve business problems involving time-to-event and resulting probabilities by following the modeling tutorials in Business Survival Analysis Using SAS: An Introduction to Lifetime Probabilities, the first book to be published in the field of business survival analysis! Survival analysis is a challenge. Books applying to health sciences exist, but nothing about survival applications for business has been available until now. Written for analysts, forecasters, econometricians, and modelers who work in marketing or credit risk and have little SAS modeling experience, Business Survival Analysis Using SAS builds on a foundation of SAS code that works in any survival model and features numerous annotated graphs, coefficients, and statistics linked to real business situations and data sets. This guide also helps recent graduates who know the statistics but do not necessarily know how to apply them get up and running in their jobs. By example, it teaches the techniques while avoiding advanced theoretical underpinnings so that busy professionals can rapidly deliver a survival model to meet common business needs. From first principles, this book teaches survival analysis by highlighting its relevance to business cases. A pragmatic introduction to survival analysis models, it leads you through business examples that contextualize and motivate the statistical methods and SAS coding. Specifically, it illustrates how to build a time-to-next-purchase survival model in SAS Enterprise Miner, and it relates each step to the underlying statistics and to Base SAS and SAS/STAT software. Following the many examples-from data preparation to validation to scoring new customers-you will learn to develop and apply survival analysis techniques to scenarios faced by companies in the financial services, insurance, telecommunication, and marketing industries, including the following scenarios: Time-to-next-purchase for marketing Employer turnover for human resources Small business portfolio macroeconometric stress tests for banks International Financial Reporting Standard (IFRS 9) lifetime probability of default for banks and building societies "Churn," or attrition, models for the telecommunications and insurance industries


Modeling Survival Data: Extending the Cox Model

Modeling Survival Data: Extending the Cox Model

Author: Terry M. Therneau

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 356

ISBN-13: 1475732945

DOWNLOAD EBOOK

This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.