Discusses "the safety concepts which form the basis of modern bridge design and assessment codes" and "the background work carried out in the development of the new UK bridge and route-specific traffic loading requirements, and the proposed whole life performance-based assessment rules" -- Preface.
Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.
Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.
Gilt immer noch, dass ein Bauwerkseinsturz der beste Lehrmeister für den Fortschritt des Bauens ist? Oder, anders formuliert: Ist Bauen dann, wenn wir das Bewährte verlassen und Neues wagen, "Experimentieren"? Über die Ursache von Schadensfällen und Einstürzen, die oft mit dem Verlust von Menschenleben verbunden sind, wird nicht gern öffentlich gesprochen. Aber aus Fehlern kann man lernen. Die Lehren und Erfahrungen aus den Schadensauswertungen führen zu mehr Sicherheit und oft zum Innovationsschub. Die Kenntnis der Schadensursachen ist Voraussetzung für ihre zukünftige Vermeidung. Mit diesem Buch liegt eine systematische Zusammenstellung von über 400 Versagensfällen vor, die in besonderer Weise betrachtet werden: Sie werden nach dem Zeitpunkt ihres Auftretens im Lebenszyklus der Brücke, z. B. im Bauzustand oder im Betrieb, und nach den Schadensereignissen, z. B. Anprall oder Erdbeben, geordnet. Die wichtigsten Ursachen sind: menschliches Versagen, mangelnde Aussteifung, Materialversagen oder Überlastung. Es werden vorwiegend Brückeneinstürze, die in der Literatur wenig oder nach dem Urteil des Verfassers nicht vollständig oder nicht zutreffend behandelt sind, ausführlich analysiert. Mit Akribie gesammelt, kompetent und exzellent aufgearbeitet und mit Mut präsentiert, ergibt dies eine unverzichtbare Erkenntnisquelle für jeden Bauingenieur in der Praxis und für das Studium. Ein Katalog von Regeln wurde erstellt. Seine Beachtung kann helfen, Fehler bei Entwurf, Planung und Ausführung zu vermeiden.
Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance, Second Edition, brings together the essentials of bridge engineering across design, assessment, research and construction. Written by an international group of experts, each chapter is divided into two parts: the first covers design issues, while the second presents current research into the innovative design approaches used across the world. This new edition includes new topics such as foot bridges, new materials in bridge engineering and soil-foundation structure interaction. All chapters have been updated to include the latest concepts in design, construction, and maintenance to reduce project cost, increase structural safety, and maximize durability. Code and standard references have been updated. - Completely revised and updated with the latest in bridge engineering and design - Provides detailed design procedures for specific bridges with solved examples - Presents structural analysis including numerical methods (FEM), dynamics, risk and reliability, and innovative structural typologies
A new ‘Multi-Coloured Manual' This book is a successor to and replacement for the highly respected manual and handbook on the benefits of flood and coastal risk management, produced by the Flood Hazard Research Centre at Middlesex University, UK, with support from Defra and the Environment Agency. It builds upon a previous book known as the "multi-coloured manual" (2005), which itself was a synthesis of the blue (1977), red (1987) and yellow manuals (1992). As such it expands and updates this work, to provide a manual of assessment techniques of flood risk management benefits, indirect benefits, and coastal erosion risk management benefits. It has three key aims. First it provides methods and data which can be used for the practical assessment of schemes and policies. Secondly it describes new research to update the data and improve techniques. Thirdly it explains the limitations and complications of Benefit-Cost Analysis, to guide decision-making on investment in river and coastal risk management schemes.
An Insiders' Guide to Inspecting, Maintaining, and Operating BridgesSuspension bridges are graceful, aesthetic, and iconic structures. Due to their attractiveness and visibility, they are well-known symbols of major cities and countries in the world. They are also essential form of transportation infrastructure built across large bodies of water. D
This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: · Analysing slab-on-girder bridges for live load distribution. · Analysing slab and other solid bridge components for live load distribution. · Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. · Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures made with fibre-reinforced polymers will allow engineers to design highly durable, economical and sustainable structures. This chapter also provides guidance on rehabilitating deteriorated structures with these new materials. The book also deals with the philosophy of bridge design without resorting to complex equations. Additional material to this book can be downloaded from http://extras.springer.com
This guide provides bridge related definitions and corresponding commentaries, as well as the framework for a systematic approach to a preventive maintenance program. The goal is to provide guidance on bridge preservation. This guide is intended for Federal, State, and local bridge engineers, area engineers, bridge owners, and bridge preservation practitioners.