Offering accessible and nuanced coverage, Richard W. Hamming discusses theories of probability with unique clarity and depth. Topics covered include the basic philosophical assumptions, the nature of stochastic methods, and Shannon entropy. One of the best introductions to the topic, The Art of Probability is filled with unique insights and tricks worth knowing.
This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
In 1919, Bieberbach posed a seemingly simple conjecture. That ``simple'' conjecture challenged mathematicians in complex analysis for the following 68 years! In that time, a huge number of papers discussing the conjecture and its related problems were inspired. Finally in 1984, de Branges completed the solution. In 1989, Professor Gong wrote and published a short book in Chinese, The Bieberbach Conjecture, outlining the history of the related problems and de Branges' proof. The present volume is the English translation of that Chinese edition with modifications by the author. In particular, he includes results related to several complex variables. Open problems and a large number of new mathematical results motivated by the Bieberbach conjecture are included. Completion of a standard one-year graduate complex analysis course will prepare the reader for understanding the book. It would make a nice supplementary text for a topics course at the advanced undergraduate or graduate level.
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields.This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
This book provides insight into the Life Cycle Management (LCM) concept and the progress in its implementation. LCM is a management concept applied in industrial and service sectors to improve products and services, while enhancing the overall sustainability performance of business and its value chains. In this regard, LCM is an opportunity to differentiate through sustainability performance on the market place, working with all departments of a company such as research and development, procurement and marketing, and to enhance the collaboration with stakeholders along a company’s value chain. LCM is used beyond short-term business success and aims at long-term achievements by minimizing environmental and socio-economic burden, while maximizing economic and social value.
Kurt Gödel was an intellectual giant. His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Shattering hopes that logic would, in the end, allow us a complete understanding of the universe, Gödel's theorem also raised many provocative questions: What are the limits of rational thought? Can we ever fully understand the machines we build? Or the inner workings of our own minds? How should mathematicians proceed in the absence of complete certainty about their results? Equally legendary were Gödel's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first book for a general audience on this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life.
The material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.