Simulation and Imaging of the Cardiac System

Simulation and Imaging of the Cardiac System

Author: S. Sideman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 448

ISBN-13: 9400949928

DOWNLOAD EBOOK

The ultrasound velocity tomography allows measurement of cardiac geometries for various phases in the cardiac cycle. The present tomograph makes reconstruc tions at intervals of 20 ms. Because of a lack of clear (intramural) landmarks (except the roots of the papillairy muscle), it is difficult to pinpoint spatial trajectories of particular points in the heart. Therefore, a second method was developed of injecting radiopaque markers in the heart and following their motion patterns during the cardiac cycle with help of a biplane X-ray equipment. The data obtained with both methods can be implemented in our finite element model of the heart to compute intramural stresses and strains. The results obtained sofar with the extended Darcy equation to account for the interaction of blood rheology and tissue mechanics look promising. Further testing with more sophisticated subjects than mentioned in Figure 9 is required before it will be implemented in our finite element model of the heart. We conclude that analysis of regional cardiac function, including regional myocardial blood flow, requires still a major research effort but the results obtained sofar justify, to our opinion, a continuation in this direction. Acknowledgement The authors acknowledge Dr. C. Borst and coworkers for doing the animal experiments and prof. Van Campen and dr. Grootenboer for their participation is some aspects of this work.


Regulation of Coronary Blood Flow

Regulation of Coronary Blood Flow

Author: Michitoshi Inoue

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 330

ISBN-13: 4431683674

DOWNLOAD EBOOK

Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.


Skeletal Muscle Circulation

Skeletal Muscle Circulation

Author: Ronald J. Korthuis

Publisher: Morgan & Claypool Publishers

Published: 2011

Total Pages: 147

ISBN-13: 1615041834

DOWNLOAD EBOOK

The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References


Regulation of Tissue Oxygenation, Second Edition

Regulation of Tissue Oxygenation, Second Edition

Author: Roland N. Pittman

Publisher: Biota Publishing

Published: 2016-08-18

Total Pages: 117

ISBN-13: 1615047212

DOWNLOAD EBOOK

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.


Adenosine Receptors in Health and Disease

Adenosine Receptors in Health and Disease

Author: Constance N. Wilson

Publisher: Springer Science & Business Media

Published: 2009-07-28

Total Pages: 656

ISBN-13: 3540896155

DOWNLOAD EBOOK

Since their discovery approximately 25 years ago, adenosine receptors have now emerged as important novel molecular targets in disease and drug discovery. These proteins play important roles in the entire spectrum of disease from inflammation to immune suppression. Because of their expression on a number of different cell types and in a number of different organ systems they play important roles in specific diseases, including asthma, rheumatoid arthritis, Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, heart disease, stroke, cancer, sepsis, and obesity. As a result of intense investigations into understanding the molecular structures and pharmacology of these proteins, new molecules have been synthesized that have high specificity for these proteins and are now entering clinical trials. These molecules will define the next new classes of drugs for a number of diseases with unmet medical needs.


Angiogenesis

Angiogenesis

Author: Thomas H. Adair

Publisher: Morgan & Claypool Publishers

Published: 2011

Total Pages: 85

ISBN-13: 1615043306

DOWNLOAD EBOOK

Angiogenesis is the growth of blood vessels from the existing vasculature. The field of angiogenesis has grown enormously in the past 30 years, with only 40 papers published in 1980 and nearly 6000 in 2010. Why has there been this explosive growth in angiogenesis research? Angiogenic therapies provide a potential to conquer cancer, heart diseases, and more than 70 of life's most threatening medical conditions. The lives of at least 1 billion people worldwide could be improved with angiogenic therapy, according to the Angiogenesis Foundation. In this little book, we provide a simple approach to understand the essential elements of the angiogenic process, we critique the most powerful angiogenesis assays that are used to discover proangiogenic and antiangiogenic substances, and we provide an in-depth physiological perspective on how angiogenesis is regulated in normal, healthy tissues of the human body. All tissues of the body require a continuous supply of oxygen to burn metabolic substrates that are needed for energy. Oxygen is conducted to these tissues by blood capillaries: more capillaries can improve tissue oxygenation and thus enhance energy production; fewer capillaries can lead to hypoxia and even anoxia in the tissues. This means that angiogenic therapies designed to control the growth and regression of blood capillaries can be used to improve the survival of poorly perfused tissues that are essential to the body (heart, brain, skeletal muscle, etc.) and to rid the body of unwanted tissues (tumors). Table of Contents: Overview of Angiogenesis / Angiogenesis Assays / Regulation: Metabolic Factors / Regulation: Mechanical Factors / Glossary / References / Author Biographies


Caffeine for the Sustainment of Mental Task Performance

Caffeine for the Sustainment of Mental Task Performance

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2002-01-07

Total Pages: 172

ISBN-13: 0309082587

DOWNLOAD EBOOK

This report from the Committee on Military Nutrition Research reviews the history of caffeine usage, the metabolism of caffeine, and its physiological effects. The effects of caffeine on physical performance, cognitive function and alertness, and alleviation of sleep deprivation impairments are discussed in light of recent scientific literature. The impact of caffeine consumption on various aspects of health, including cardiovascular disease, reproduction, bone mineral density, and fluid homeostasis are reviewed. The behavioral effects of caffeine are also discussed, including the effect of caffeine on reaction to stress, withdrawal effects, and detrimental effects of high intakes. The amounts of caffeine found to enhance vigilance and reaction time consistently are reviewed and recommendations are made with respect to amounts of caffeine appropriate for maintaining alertness of military personnel during field operations. Recommendations are also provided on the need for appropriate labeling of caffeine-containing supplements, and education of military personnel on the use of these supplements. A brief review of some alternatives to caffeine is also provided.