Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods

Author: Regina Y. Liu

Publisher: Springer

Published: 2016-09-20

Total Pages: 284

ISBN-13: 3319390651

DOWNLOAD EBOOK

The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.


Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods

Author: Thomas P. Hettmansperger

Publisher: John Wiley & Sons

Published: 1998

Total Pages: 492

ISBN-13:

DOWNLOAD EBOOK

Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.


Computational Statistics in the Earth Sciences

Computational Statistics in the Earth Sciences

Author: Alan D. Chave

Publisher: Cambridge University Press

Published: 2017-10-19

Total Pages: 467

ISBN-13: 1107096006

DOWNLOAD EBOOK

This book combines theoretical underpinnings of statistics with practical analysis of Earth sciences data using MATLAB. Supplementary resources are available online.


Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R

Author: John Kloke

Publisher: CRC Press

Published: 2024-05-20

Total Pages: 466

ISBN-13: 1040025153

DOWNLOAD EBOOK

Praise for the first edition: “This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R.” -The American Statistician This thoroughly updated and expanded second edition of Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses. Two new chapters covering multivariate analyses and big data have been added. Core classical nonparametrics chapters on one- and two-sample problems have been expanded to include discussions on ties as well as power and sample size determination. Common machine learning topics --- including k-nearest neighbors and trees --- have also been included in this new edition. Key Features: Covers a wide range of models including location, linear regression, ANOVA-type, mixed models for cluster correlated data, nonlinear, and GEE-type. Includes robust methods for linear model analyses, big data, time-to-event analyses, timeseries, and multivariate. Numerous examples illustrate the methods and their computation. R packages are available for computation and datasets. Contains two completely new chapters on big data and multivariate analysis. The book is suitable for advanced undergraduate and graduate students in statistics and data science, and students of other majors with a solid background in statistical methods including regression and ANOVA. It will also be of use to researchers working with nonparametric and rank-based methods in practice.


Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R

Author: John Kloke

Publisher: CRC Press

Published: 2014-10-09

Total Pages: 283

ISBN-13: 1439873445

DOWNLOAD EBOOK

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.


Robust and Multivariate Statistical Methods

Robust and Multivariate Statistical Methods

Author: Mengxi Yi

Publisher: Springer Nature

Published: 2023-04-19

Total Pages: 500

ISBN-13: 3031226879

DOWNLOAD EBOOK

This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.


Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data

Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data

Author: Rosa Arboretti

Publisher: Springer

Published: 2018-06-18

Total Pages: 90

ISBN-13: 3319917404

DOWNLOAD EBOOK

This book deals with problems related to the evaluation of customer satisfaction in very different contexts and ways. Often satisfaction about a product or service is investigated through suitable surveys which try to capture the satisfaction about several partial aspects which characterize the perceived quality of that product or service. This book presents a series of statistical techniques adopted to analyze data from real situations where customer satisfaction surveys were performed. The aim is to give a simple guide of the variety of analysis that can be performed when analyzing data from sample surveys: starting from latent variable models to heterogeneity in satisfaction and also introducing some testing methods for comparing different customers. The book also discusses the construction of composite indicators including different benchmarks of satisfaction. Finally, some rank-based procedures for analyzing survey data are also shown.


Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing

Author: Rand R. Wilcox

Publisher: Academic Press

Published: 2012-01-12

Total Pages: 713

ISBN-13: 0123869838

DOWNLOAD EBOOK

"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--


Multivariate Nonparametric Methods with R

Multivariate Nonparametric Methods with R

Author: Hannu Oja

Publisher: Springer Science & Business Media

Published: 2010-03-25

Total Pages: 239

ISBN-13: 1441904689

DOWNLOAD EBOOK

This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.


Selected Works of E. L. Lehmann

Selected Works of E. L. Lehmann

Author: Javier Rojo

Publisher: Springer Science & Business Media

Published: 2012-01-16

Total Pages: 1103

ISBN-13: 1461414113

DOWNLOAD EBOOK

These volumes present a selection of Erich L. Lehmann’s monumental contributions to Statistics. These works are multifaceted. His early work included fundamental contributions to hypothesis testing, theory of point estimation, and more generally to decision theory. His work in Nonparametric Statistics was groundbreaking. His fundamental contributions in this area include results that came to assuage the anxiety of statisticians that were skeptical of nonparametric methodologies, and his work on concepts of dependence has created a large literature. The two volumes are divided into chapters of related works. Invited contributors have critiqued the papers in each chapter, and the reprinted group of papers follows each commentary. A complete bibliography that contains links to recorded talks by Erich Lehmann – and which are freely accessible to the public – and a list of Ph.D. students are also included. These volumes belong in every statistician’s personal collection and are a required holding for any institutional library.