Robot Navigation from Nature

Robot Navigation from Nature

Author: Michael John Milford

Publisher: Springer Science & Business Media

Published: 2008-02-11

Total Pages: 203

ISBN-13: 3540775196

DOWNLOAD EBOOK

This pioneering book describes the development of a robot mapping and navigation system inspired by models of the neural mechanisms underlying spatial navigation in the rodent hippocampus. Computational models of animal navigation systems have traditionally had limited performance when implemented on robots. This is the first research to test existing models of rodent spatial mapping and navigation on robots in large, challenging, real world environments.


Robot Localization and Map Building

Robot Localization and Map Building

Author: Hanafiah Yussof

Publisher: BoD – Books on Demand

Published: 2010-03-01

Total Pages: 589

ISBN-13: 9537619834

DOWNLOAD EBOOK

Localization and mapping are the essence of successful navigation in mobile platform technology. Localization is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle positioning. Robot localization and mapping is commonly related to cartography, combining science, technique and computation to build a trajectory map that reality can be modelled in ways that communicate spatial information effectively. This book describes comprehensive introduction, theories and applications related to localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in robot navigation technology. Understanding the theory and principles described in this book requires a multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer science, physics, etc.


Laser and Radar Based Robotic Perception

Laser and Radar Based Robotic Perception

Author: Martin Adams

Publisher:

Published: 2011

Total Pages: 130

ISBN-13: 9781601984722

DOWNLOAD EBOOK

Laser and Radar Based Robotic Perception looks at how perceptive laser and radar sensors provide information from the surrounding environment, a critical aspect of many robotics applications.


Autonomous Navigation in Dynamic Environments

Autonomous Navigation in Dynamic Environments

Author: Christian Laugier

Publisher: Springer

Published: 2007-10-14

Total Pages: 176

ISBN-13: 3540734228

DOWNLOAD EBOOK

This book presents a foundation for a broad class of mobile robot mapping and navigation methodologies for indoor, outdoor, and exploratory missions. It addresses the challenging problem of autonomous navigation in dynamic environments, presenting new ideas and approaches in this emerging technical domain. Coverage discusses in detail various related challenging technical aspects and addresses upcoming technologies in this field.


Robot Navigation from Nature

Robot Navigation from Nature

Author: Michael John Milford

Publisher: Springer

Published: 2009-09-03

Total Pages: 196

ISBN-13: 9783540847038

DOWNLOAD EBOOK

This pioneering book describes the development of a robot mapping and navigation system inspired by models of the neural mechanisms underlying spatial navigation in the rodent hippocampus. Computational models of animal navigation systems have traditionally had limited performance when implemented on robots. This is the first research to test existing models of rodent spatial mapping and navigation on robots in large, challenging, real world environments.


Advances in Robot Navigation

Advances in Robot Navigation

Author: Alejandra Barrera

Publisher: BoD – Books on Demand

Published: 2011-07-05

Total Pages: 254

ISBN-13: 9533073462

DOWNLOAD EBOOK

Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics.


Active Sensors for Local Planning in Mobile Robotics

Active Sensors for Local Planning in Mobile Robotics

Author: Penelope Probert Smith

Publisher: World Scientific

Published: 2001

Total Pages: 337

ISBN-13: 9812811141

DOWNLOAD EBOOK

This book describes recent work on active sensors for mobile robots. An active sensor interacts with its surroundings to supply data on demand for a particular function, gathering and abstracting information according to need rather than acting as a generic data gatherer. Details of the physical operation are hidden. The book deals mainly with active range sensors, which provide rapid information for local planning, describing extraction of two-dimensional features such as lines, corners and cylinders to reconstruct a plan of a building. It is structured according to the physical principles of the sensors, since to a large extent these determine the function of the sensors and the methods of processing. Recent work using sonar, optoelectronic sensors and radar is described. Sections on vision and on sensor management develop the idea of software adaptation for efficient operation in a changing environment. Contents: The Mapping and Localisation Problem; Perception at Millimetre Wavelengths; Advanced Sonar: Principles of Operation and Interpretation; Smooth and Rough Target Modelling: Examples in Mapping and Texture Classification; Sonar Systems: A Biological Perspective; Map Building from Range Data Using Mathematical Morphology; Millimetre Wave Radar for Robotics; Optoelectronic Range Sensors; AMCW LIDAR Range Acquisition; Extracting Lines and Curves from Optoelectronic Range Data; Active Vision for Mobile Robot Navigation; Strategies for Active Sensor Management. Readership: Graduate students and final year undergraduate students in electrical and electronic engineering, systems and knowledge, robotics, image processing and artificial intelligence.


Robotic Subsurface Mapping Using Ground Penetrating Radar

Robotic Subsurface Mapping Using Ground Penetrating Radar

Author: Herman Herman

Publisher:

Published: 1997

Total Pages: 143

ISBN-13:

DOWNLOAD EBOOK

Abstract: "The goal of our research is to develop an autonomous robot for subsurface mapping. We are motivated by the growing need for mapping buried pipes, hazardous waste, landmines and other buried objects. Most of these are large scale mapping problems, and to manually construct subsurface maps in these cases would require a significant amount of resources. Therefore, automating the subsurface mapping process is an important factor in alleviating these problems. To achieve our goal, we have developed a robotic system that can autonomously gather and process Ground Penetrating Radar (GPR) data. The system uses a scanning laser rangefinder to construct an elevation map of an area. By using the elevation map, a robotic manipulator can follow the contour of the terrain when it moves the GPR antenna during the scanning process. The collected data are then processed to detect and locate buried objects. We have developed three new processing methods, two are volume based processing methods and one is a surface based processing method. In volume based processing, the 3-D data are directly processed to find the buried objects, while in surface based processing, the 3-D data are first reduced to a series of 2.5-D surfaces before further processing. Each of these methods has its own strengths and weaknesses. The volume based processing methods can be made very fast using parallel processing techniques, but they require an accurate propagation velocity of the GPR signal in the soil. On the other hand, the surface based processing method uses 3-D segmentation to recognize the shape of the buried objects, which does not require an accurate propagation velocity estimate. Both approaches are quite efficient and well suited for online data processing. In fact, they are so efficient that the current bottleneck in the subsurface mapping process is the data acquisition phase. The main contribution of the thesis is the development of an autonomous system for detecting and localizing buried objects. Specifically, we have developed three new methods to find buried objects in 3-D GPR data. Using these methods, we are able to autonomously obtain subsurface data, locate and recognize buried objects. These methods differ from existing GPR data processing methods because they can autonomously extract the location, orientation, and parameters of the buried objects from high resolution 3-D data. Most existing methods only enhance the GPR data for easier interpretation by human experts. There are some existing works in automated interpretation of GPR data, but they only work with 2-D GPR data. We implemented the three different methods and also tested them by building subsurface maps of various buried objects under different soil conditions. We also used these sub-surface mapping methods to demonstrate an autonomous buried object retrieval system. In summary, we have developed a robotic system which make [sic] subsurface mapping faster, more accurate and reliable."