This book documents the First World Landslide Forum, which was jointly organized by the International Consortium on Landslides (ICL), eight UN organizations (UNESCO, WMO, FAO, UN/ISDR, UNU, UNEP, World Bank, UNDP) and four NGOs (International Council for Science, World Federation of Engineering Organizations, Kyoto Univ. and Japan Landslide Society) in Tokyo in 2008. The material consists of four parts: The Open Forum "Progress of IPL Activities; Four Thematic Lectures in the Plenary Symposium "Global Landslide Risk Reduction"; Six Keynote Lectures in the Plenary session; and the aims and overviews of eighteen parallel sessions (dealing with various aspects necessary for landslide disaster risk reduction such as: observations from space; climate change and slope instability; landslides threatening heritage sites; the economic and social impact of landslides; monitoring, prediction and early warning; and risk-management strategies in urban area, etc.) Thus it enables the reader to benefit from a wide range of research intended to reduce risk due to landslide disasters as presented in the first global multi-disciplinary meeting.
While not all natural disasters can be avoided, their impact on a population can be mitigated through effective planning and preparedness. These are the lessons to be learned from Japan's own megadisaster: the Great East Japan Earthquake of 2011, the fi rst disaster ever recorded that included an earthquake, a tsunami, a nuclear power plant accident, a power supply failure, and a large-scale disruption of supply chains. It is a sad fact that poor communities are often hardest hit and take the longest to recover from disaster. Disaster risk management (DRM) should therefore be taken into account as a major development challenge, and countries must shift from a tradition of response to a culture of prevention and resilience. Learning from Megadisasters: Lessons from the Great East Japan Earthquake consolidates a set of 36 Knowledge Notes, research results of a joint study undertaken by the Government of Japan and the World Bank. These notes highlight key lessons learned in seven DRM thematic clusters—structural measures; nonstructural measures; emergency response; reconstruction planning; hazard and risk information and decision making; the economics of disaster risk, risk management, and risk fi nancing; and recovery and relocation. Aimed at sharing Japanese cutting-edge knowledge with practitioners and decision makers, this book provides valuable guidance to other disaster-prone countries for mainstreaming DRM in their development policies and weathering their own natural disasters.
This valuable edition brings together 25 peer reviewed articles on technical, socio-economic, environmental and policy aspects of flood risk management. Some emerging technologies are presented and several future challenges are identified. Thus the book forms an excellent reference for the engineers, scientists, planners, policy-makers, researchers, insurance industry and all the practitioners involved in flood risk management.
With the increasing need to take an holistic view of landslide hazard and risk, this book overviews the concept of risk research and addresses the sociological and psychological issues resulting from landslides. Its integrated approach offers understanding and ability for concerned organisations, landowners, land managers, insurance companies and researchers to develop risk management solutions. Global case studies illustrate a variety of integrated approaches, and a concluding section provides specifications and contexts for the next generation of process models.
Few subjects have caught the attention of the entire world as much as those dealing with natural hazards. The first decade of this new millennium provides a litany of tragic examples of various hazards that turned into disasters affecting millions of individuals around the globe. The human losses (some 225,000 people) associated with the 2004 Indian Ocean earthquake and tsunami, the economic costs (approximately 200 billion USD) of the 2011 Tohoku Japan earthquake, tsunami and reactor event, and the collective social impacts of human tragedies experienced during Hurricane Katrina in 2005 all provide repetitive reminders that we humans are temporary guests occupying a very active and angry planet. Any examples may have been cited here to stress the point that natural events on Earth may, and often do, lead to disasters and catastrophes when humans place themselves into situations of high risk. Few subjects share the true interdisciplinary dependency that characterizes the field of natural hazards. From geology and geophysics to engineering and emergency response to social psychology and economics, the study of natural hazards draws input from an impressive suite of unique and previously independent specializations. Natural hazards provide a common platform to reduce disciplinary boundaries and facilitate a beneficial synergy in the provision of timely and useful information and action on this critical subject matter. As social norms change regarding the concept of acceptable risk and human migration leads to an explosion in the number of megacities, coastal over-crowding and unmanaged habitation in precarious environments such as mountainous slopes, the vulnerability of people and their susceptibility to natural hazards increases dramatically. Coupled with the concerns of changing climates, escalating recovery costs, a growing divergence between more developed and less developed countries, the subject of natural hazards remains on the forefront of issues that affect all people, nations, and environments all the time. This treatise provides a compendium of critical, timely and very detailed information and essential facts regarding the basic attributes of natural hazards and concomitant disasters. The Encyclopedia of Natural Hazards effectively captures and integrates contributions from an international portfolio of almost 300 specialists whose range of expertise addresses over 330 topics pertinent to the field of natural hazards. Disciplinary barriers are overcome in this comprehensive treatment of the subject matter. Clear illustrations and numerous color images enhance the primary aim to communicate and educate. The inclusion of a series of unique “classic case study” events interspersed throughout the volume provides tangible examples linking concepts, issues, outcomes and solutions. These case studies illustrate different but notable recent, historic and prehistoric events that have shaped the world as we now know it. They provide excellent focal points linking the remaining terms in the volume to the primary field of study. This Encyclopedia of Natural Hazards will remain a standard reference of choice for many years.
This open access book summarizes the findings of the VUELCO project, a multi-disciplinary and cross-boundary research funded by the European Commission's 7th framework program. It comprises four broad topics: 1. The global significance of volcanic unrest 2. Geophysical and geochemical fingerprints of unrest and precursory activity 3. Magma dynamics leading to unrest phenomena 4. Bridging the gap between science and decision-making Volcanic unrest is a complex multi-hazard phenomenon. The fact that unrest may, or may not lead to an imminent eruption contributes significant uncertainty to short-term volcanic hazard and risk assessment. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the understanding of the causative links between subsurface processes, resulting unrest signals and imminent eruption is incomplete. When a volcano evolves from dormancy into a phase of unrest, important scientific, political and social questions need to be addressed. This book is aimed at graduate students, researchers of volcanic phenomena, professionals in volcanic hazard and risk assessment, observatory personnel, as well as emergency managers who wish to learn about the complex nature of volcanic unrest and how to utilize new findings to deal with unrest phenomena at scientific and emergency managing levels. This book is open access under a CC BY license.
Introduces risk assessment with key theories, proven methods, and state-of-the-art applications Risk Assessment: Theory, Methods, and Applications remains one of the few textbooks to address current risk analysis and risk assessment with an emphasis on the possibility of sudden, major accidents across various areas of practice—from machinery and manufacturing processes to nuclear power plants and transportation systems. Updated to align with ISO 31000 and other amended standards, this all-new 2nd Edition discusses the main ideas and techniques for assessing risk today. The book begins with an introduction of risk analysis, assessment, and management, and includes a new section on the history of risk analysis. It covers hazards and threats, how to measure and evaluate risk, and risk management. It also adds new sections on risk governance and risk-informed decision making; combining accident theories and criteria for evaluating data sources; and subjective probabilities. The risk assessment process is covered, as are how to establish context; planning and preparing; and identification, analysis, and evaluation of risk. Risk Assessment also offers new coverage of safe job analysis and semi-quantitative methods, and it discusses barrier management and HRA methods for offshore application. Finally, it looks at dynamic risk analysis, security and life-cycle use of risk. Serves as a practical and modern guide to the current applications of risk analysis and assessment, supports key standards, and supplements legislation related to risk analysis Updated and revised to align with ISO 31000 Risk Management and other new standards and includes new chapters on security, dynamic risk analysis, as well as life-cycle use of risk analysis Provides in-depth coverage on hazard identification, methodologically outlining the steps for use of checklists, conducting preliminary hazard analysis, and job safety analysis Presents new coverage on the history of risk analysis, criteria for evaluating data sources, risk-informed decision making, subjective probabilities, semi-quantitative methods, and barrier management Contains more applications and examples, new and revised problems throughout, and detailed appendices that outline key terms and acronyms Supplemented with a book companion website containing Solutions to problems, presentation material and an Instructor Manual Risk Assessment: Theory, Methods, and Applications, Second Edition is ideal for courses on risk analysis/risk assessment and systems engineering at the upper-undergraduate and graduate levels. It is also an excellent reference and resource for engineers, researchers, consultants, and practitioners who carry out risk assessment techniques in their everyday work.
Global Flood Hazard Subject Category Winner, PROSE Awards 2019, Earth Science Selected from more than 500 entries, demonstrating exceptional scholarship and making a significant contribution to the field of study. Flooding is a costly natural disaster in terms of damage to land, property and infrastructure. This volume describes the latest tools and technologies for modeling, mapping, and predicting large-scale flood risk. It also presents readers with a range of remote sensing data sets successfully used for predicting and mapping floods at different scales. These resources can enable policymakers, public planners, and developers to plan for, and respond to, flooding with greater accuracy and effectiveness. Describes the latest large-scale modeling approaches, including hydrological models, 2-D flood inundation models, and global flood forecasting models Showcases new tools and technologies such as Aqueduct, a new web-based tool used for global assessment and projection of future flood risk under climate change scenarios Features case studies describing best-practice uses of modeling techniques, tools, and technologies Global Flood Hazard is an indispensable resource for researchers, consultants, practitioners, and policy makers dealing with flood risk, flood disaster response, flood management, and flood mitigation.
Many coastal areas of the United States are at risk for tsunamis. After the catastrophic 2004 tsunami in the Indian Ocean, legislation was passed to expand U.S. tsunami warning capabilities. Since then, the nation has made progress in several related areas on both the federal and state levels. At the federal level, NOAA has improved the ability to detect and forecast tsunamis by expanding the sensor network. Other federal and state activities to increase tsunami safety include: improvements to tsunami hazard and evacuation maps for many coastal communities; vulnerability assessments of some coastal populations in several states; and new efforts to increase public awareness of the hazard and how to respond. Tsunami Warning and Preparedness explores the advances made in tsunami detection and preparedness, and identifies the challenges that still remain. The book describes areas of research and development that would improve tsunami education, preparation, and detection, especially with tsunamis that arrive less than an hour after the triggering event. It asserts that seamless coordination between the two Tsunami Warning Centers and clear communications to local officials and the public could create a timely and effective response to coastal communities facing a pending tsuanami. According to Tsunami Warning and Preparedness, minimizing future losses to the nation from tsunamis requires persistent progress across the broad spectrum of efforts including: risk assessment, public education, government coordination, detection and forecasting, and warning-center operations. The book also suggests designing effective interagency exercises, using professional emergency-management standards to prepare communities, and prioritizing funding based on tsunami risk.