Rigidity Theory and Applications

Rigidity Theory and Applications

Author: M.F. Thorpe

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 435

ISBN-13: 0306470896

DOWNLOAD EBOOK

Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.


Euclidean Distance Matrices and Their Applications in Rigidity Theory

Euclidean Distance Matrices and Their Applications in Rigidity Theory

Author: Abdo Y. Alfakih

Publisher: Springer

Published: 2018-10-13

Total Pages: 258

ISBN-13: 3319978462

DOWNLOAD EBOOK

This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in our approach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.


Rigidity Theory and Applications

Rigidity Theory and Applications

Author: M.F. Thorpe

Publisher: Springer Science & Business Media

Published: 1999-05-31

Total Pages: 435

ISBN-13: 0306461153

DOWNLOAD EBOOK

Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.


Rigid Designation and Theoretical Identities

Rigid Designation and Theoretical Identities

Author: Joseph LaPorte

Publisher: Oxford University Press

Published: 2013

Total Pages: 260

ISBN-13: 0199609209

DOWNLOAD EBOOK

Joseph LaPorte offers an original account of the connections between the reference of words for properties and kinds, and theoretical identity statements. He argues that terms for properties, as well as for concrete objects, are rigid designators, and defends the Kripkean tradition of theoretical identities.


Rigidity and Symmetry

Rigidity and Symmetry

Author: Robert Connelly

Publisher: Springer

Published: 2014-06-11

Total Pages: 378

ISBN-13: 1493907816

DOWNLOAD EBOOK

This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.


Counting on Frameworks

Counting on Frameworks

Author: Jack E. Graver

Publisher: Cambridge University Press

Published: 2001-09-06

Total Pages: 196

ISBN-13: 9780883853313

DOWNLOAD EBOOK

Book developing a mathematical theory of rigidity, for undergraduates working in modelling or graph theory.


Applications of Polynomial Systems

Applications of Polynomial Systems

Author: David A. Cox

Publisher: American Mathematical Soc.

Published: 2020-03-02

Total Pages: 264

ISBN-13: 1470451379

DOWNLOAD EBOOK

Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as BĂ©zier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.


Computers, Rigidity, and Moduli

Computers, Rigidity, and Moduli

Author: Shmuel Weinberger

Publisher: Princeton University Press

Published: 2005

Total Pages: 204

ISBN-13: 9780691118895

DOWNLOAD EBOOK

This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow. The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it. Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.


Distance Geometry

Distance Geometry

Author: Antonio Mucherino

Publisher: Springer

Published: 2015-01-28

Total Pages: 0

ISBN-13: 9781489985781

DOWNLOAD EBOOK

This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.


Beyond Rigidity

Beyond Rigidity

Author: Scott Soames

Publisher: Oxford University Press, USA

Published: 2002

Total Pages: 392

ISBN-13: 0195145283

DOWNLOAD EBOOK

Soames introduces a new conception of the relationship between linguistic meaning and assertions made by utterances. He gives meanings of proper names and natural-kind predicates and explains their use in attitude ascriptions.