Geneticists contribute on a wide range of topics in this book, from classical genetics to the most advanced research on sequencing of the rice genome and functional genomics. They review advances in rice research and discuss molecular markers, genome organization and gene isolation.
The Rice Genetics Collection of past symposia and other selected literature contains nearly 4,400 pages of searchable information on rice genetics and cytogenetics published by the IRRI and its partners since 1964. In addition to the five genetics symposia held at 5-year intervals since 1985, the collection contains classic publications that kicked off significant reporting on these subjects in the early 1960s. This collection is a comprehensive and historical documentation on the subject of rice genetics, spanning 45 years of research and scholarly work.Held in 2000 and published the following year, Rice Genetics IV contains 31 chapters from various contributors on topics dealing with rice genetic research, including molecular markers, genetic diversity, and evolution; structural and functional genomics; gene isolation and function; and transformation.
Rice is a staple food for half of the worlds population mostly in Asia. Productivity of rice has largely been improved since the Green Revolution in 1960s. Further improvement of rice yield is necessary to keep pace with population growth, which is a challenging task for breeders. This book, Rice - Germplasm, Genetics and Improvement, as its name implies, comprehensively reviews current knowledge in germplasm exploration, genetic basis of complex traits, and molecular breeding strategies in rice. In the germplasm part, we highlight the application of wild rice in rice breeding. In the genetics part, most of the complex traits related with yield, disease, quality have been covered. In the improvement part, Chinese experiences in hybrid rice breeding have been summarized together with many molecular breeding practices scattering in different chapters.
This volume is a collection of the papers presented at the Fifth IRGS in 2005. It reports the latest developments in the field and includes research on breeding, mapping of genes and quantitative trait loci, identification and cloning of cndidate genesfor biotic and abiotic stresses, gene expression, as well as genomic databases and mutant induction for functional genomics
Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies. Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight. Volume 2 begins with phylogenomics and continues with in-depth coverage of natural selection, recombination, and genomic innovation. The remaining chapters treat topics of more recent interest, including population genomics, -omics studies, and computational issues related to the handling of large-scale genomic data. Written in the highly successful Methods in Molecular BiologyTM series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses. Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.
Regional Perspective. Rice production in Africa: an overview. Rice in eastern and southern Africa: the role of international testing . Varietal improvement research in rice for Africa. Potential rice varieties for East Africa. High yielding varieties technology project for rice in tropical Africa. Insect pests and diseases of rice in Africa. National Rice Research And Production. Rice production in Kenya. Key research areas on irrigated rice in Kenya. Rice in Tanzania. The status of rice production, consumpuon, and research in Zimbabwe. , Rice research in Zimbabwe. The Zina year rice project in Madagascar. Rice in Malawi. Country report for Zambia with emphasis on activities and constraints to rice production. A review of rice research in Zambia past, present, and future prased. Recommendations. Monitoring tour in Zambia and Tanzania.
The Rice Genetics Collection of past symposia and other selected literature contains nearly 4,400 pages of searchable information on rice genetics and cytogenetics published by the IRRI and its partners since 1964. In addition to the five genetics symposia held at 5-year intervals since 1985, the collection contains classic publications that kicked off significant reporting on these subjects in the early 1960s. This collection is a comprehensive and historical documentation on the subject of rice genetics, spanning 45 years of research and scholarly work.This technical bulletin on the Present Knowledge of Rice Genetics and Cytogenetics, written in 1964 by the late Te-Tzu Chang, a renowned geneticist, provided the first effort to bring together in one medium the voluminous multilanguage literature on these important subjects. It contains seven chapters on topics dealing with the Oryza species and species relationships; the origin and indigenous center of cultivated rices; cytological and cytogenetical studies, and their evaluation in relation to rice breeding; geographical groups of cultivated rices and intervarietal hybrid sterility in Oryza sativa; and areas requiring new or renewed research efforts.
Gene Editing in Plants, Volume 149 aims to provide the reader with an up-to-date survey of cutting-edge research with gene editing tools and an overview of the implications of this research on the nutritional quality of fruits, vegetables and grains. New chapters in the updated volume include topics relating to Genome Engineering and Agriculture: Opportunities and Challenges, the Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean, the Use of Zinc-Finger Nucleases for Crop Improvement, Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus, and Gene Editing With TALEN and CRISPR/Cas in Rice. This ongoing serial contain contributions from leading scientists and researchers in the field of gene editing in plants who describe the results of their own research in this rapidly expanding area of science. - Shows the importance of revolutionary gene editing technology on plant biology research and its application to agricultural production - Provides insight into what may lie ahead in this rapidly expanding area of plant research and development - Contains contributions from major leaders in the field of plant gene editing
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.
This book offers comprehensive coverage of important grain cereals including their origin and distribution, crop gene pool, level of diversity, production constraints, traits of importance for genetic base widening, crop improvement methodologies, genome mapping, genomics for breeding, and future strategies. The chapters, contributed by eminent crop researchers from around the world, provide rare insights into the crop-specific constraints and prospects drawing from their substantial experience. As such, the book offers an essential source of information for grain cereals scientists, teachers, students, policy planners and developmental experts alike. Grain cereals, which comprise rice, wheat, maize, barley, oats, sorghum and millets, are members of the grass family. These crops are vital to human nutrition, thanks to their roles as staple food crops in different parts of the globe. Some of them are rich sources of carbohydrates, which provide energy, while others are important sources of minerals, vitamins and proteins, in addition to their medicinal properties. In most cereals, the existing variability among elite germplasm has been exploited to attain a desirable level of productivity. However, to make further breakthroughs in enhancing yield and improving stability in future crop cultivars, new sources of genes/alleles need to be identified in wild/weedy species and incorporated into the cultivated varieties. Though there have been many publications on various aspects of grain cereal improvement in the recent past, to date this essential information has remained scattered among different periodicals.