Offering a single volume reference for high frequency semiconductor devices, this handbook covers basic material characteristics, system level concerns and constraints, simulation and modeling of devices, and packaging. Individual chapters detail the properties and characteristics of each semiconductor device type, including: Varactors, Schottky diodes, transit-time devices, BJTs, HBTs, MOSFETs, MESFETs, and HEMTs. Written by leading researchers in the field, the RF and Microwave Semiconductor Device Handbook provides an excellent starting point for programs involving development, technology comparison, or acquisition of RF and wireless semiconductor devices.
Do you want to know how to design high efficiency RF and microwave solid state power amplifiers? Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow. Highlights include: Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures. The consideration of both hybrid and monolithic microwave integrated circuits (MMICs). Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences. Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages. Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions. High Efficiency RF and Microwave Solid State Power Amplifiers is: an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design; a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering. With its unique unified vision of solid state amplifiers, you won’t find a more comprehensive publication on the topic.
Microwave Devices, Circuits and Subsystems for Communications Engineering provides a detailed treatment of the common microwave elements found in modern microwave communications systems. The treatment is thorough without being unnecessarily mathematical. The emphasis is on acquiring a conceptual understanding of the techniques and technologies discussed and the practical design criteria required to apply these in real engineering situations. Key topics addressed include: Microwave diode and transistor equivalent circuits Microwave transmission line technologies and microstrip design Network methods and s-parameter measurements Smith chart and related design techniques Broadband and low-noise amplifier design Mixer theory and design Microwave filter design Oscillators, synthesisers and phase locked loops Each chapter is written by specialists in their field and the whole is edited by experience authors whose expertise spans the fields of communications systems engineering and microwave circuit design. Microwave Devices, Circuits and Subsystems for Communications Engineering is suitable for senior electrical, electronic or telecommunications engineering undergraduate students, first year postgraduate students and experienced engineers seeking a conversion or refresher text. Includes a companion website featuring: Solutions to selected problems Electronic versions of the figures Sample chapter
We have reached the double conclusion: that invention is choice, that this choice is imperatively governed by the sense of scientific beauty. Hadamard (1945), Princeton University Press, by permission. The great majority of all sources and amplifiers of microwave energy, and all devices for receiving or detecting microwaves, use a semiconductor active element. The development of microwave semiconductor devices, de scribed in this book, has proceeded from the simpler, two-terminal, devices such as GUNN or IMPATT devices, which originated in the 1960s, to the sophisticated monolithic circuit MESFET three-terminal active elements, of the 1980s and 1990s. The microwave field has experienced a renais sance in electrical engineering departments in the last few years, and much of this growth has been associated with microwave semiconductor devices. The University of Massachusetts has recently developed a well recognized program in microwave engineering. Much of the momentum for this pro gram has been provided by interaction with industrial companies, and the influx of a large number of industry-supported students. This program had a need for a course in microwave semiconductor devices, which covered the physical aspects, as well as the aspects of interest to the engineer who incorporates such devices in his designs. It was also felt that it would be im portant to introduce the most recently developed devices (HFETs, HBTs, and other advanced devices) as early as possible.
To design and develop fast and effective microwave wireless systems today involves addressing the three different 'levels': Device, circuit, and system. This book presents the links and interactions between the three different levels rather than providing just a comprehensive coverage of one specific level. With the aim of overcoming the sectional knowledge of microwave engineers, this will be the first book focused on explaining how the three different levels interact by taking the reader on a journey through the different levels going from the theoretical background to the practical applications. - Explains the links and interactions between the three different design levels of wireless communication transmitters: device, circuit, and system - Presents state-of-the-art, challenges, and future trends in the field of wireless communication systems - Covers all aspects of both mature and cutting-edge technologies for semiconductor devices for wireless communication applications - Many circuit designs outlining the limitations derived from the available transistor technologies and system requirements - Explains how new microwave measurement techniques can represent an essential tool for microwave modellers and designers
By 1990 the wireless revolution had begun. In late 2000, Mike Golio gave the world a significant tool to use in this revolution: The RF and Microwave Handbook. Since then, wireless technology spread across the globe with unprecedented speed, fueled by 3G and 4G mobile technology and the proliferation of wireless LANs. Updated to reflect this tremendous growth, the second edition of this widely embraced, bestselling handbook divides its coverage conveniently into a set of three books, each focused on a particular aspect of the technology. Six new chapters cover WiMAX, broadband cable, bit error ratio (BER) testing, high-power PAs (power amplifiers), heterojunction bipolar transistors (HBTs), as well as an overview of microwave engineering. Over 100 contributors, with diverse backgrounds in academic, industrial, government, manufacturing, design, and research reflect the breadth and depth of the field. This eclectic mix of contributors ensures that the coverage balances fundamental technical issues with the important business and marketing constraints that define commercial RF and microwave engineering. Focused chapters filled with formulas, charts, graphs, diagrams, and tables make the information easy to locate and apply to practical cases. The new format, three tightly focused volumes, provides not only increased information but also ease of use. You can find the information you need quickly, without wading through material you don’t immediately need, giving you access to the caliber of data you have come to expect in a much more user-friendly format.
An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers: network and signal theory; electronic technology with guided electromagnetic propagation; microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwave circuits (MMICs), wireless architectures and integrated circuits; passive microwave components, control components; microwave filters and matching networks. Simulation files are included in a CD Rom, found inside the book. Microwave and RF Engineering presents up-to-date research and applications at different levels of difficulty, creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject.
Envelope tracking technology is seen as the most promising efficiency enhancement technology for RF power amplifiers for 4G and beyond wireless communications. More and more organizations are investing and researching on this topic with huge potential in academic and commercial areas. This is the first book on the market to offer complete introduction, theory, and design considerations on envelope tracking for wireless communications. This resource presents you with a full introduction to the subject and covers underlying theory and practical design considerations.
This volume, RF and Microwave Applications and Systems, includes a wide range of articles that discuss RF and microwave systems used for communication and radar and heating applications. Commercial, avionics, medical, and military applications are addressed. An overview of commercial communications systems is provided. Past, current, and emerging cellular systems, navigation systems, and satellite-based systems are discussed. Specific voice and data commercial systems are investigated more thoroughly in individual chapters that follow. Detailed discussions of military electronics, avionics, and radar (both military and automotive) are provided in separate chapters. A chapter focusing on FR/microwave energy used for therapeutic medicine is also provided. Systems considerations including thermal, mechanical, reliability, power management, and safety are discussed in separate chapters. Engineering processes are also explored in articles about corporate initiatives, cost modeling, and design reviews. The book closes with a discussion of the underlying physics of electromagnetic propagation and interference. In addition to new chapters on WiMAX and broadband cable, nearly every existing chapter features extensive updates and several were completely rewritten to reflect the massive changes areas such as radio navigation and electronic warfare.