Auch Band 19 dieser seit Jahren bewährten und erfolgreichen Reihe führt Neueinsteiger in moderne Forschungsgebiete der Computerchemie ein und hilft Fachleuten, auf dem Laufenden zu bleiben. - international renommierte Fachleute diskutieren Themen aus den Bereichen Molecular modeling, Quantenchemie, computergestütztes Moleküldesign (CAMD), Molekülmechanik und -dynamik sowie QSAR (Quantitative Struktur-Reaktivitäts-Beziehungen) - ausführliche Autoren- und Sachregister erleichtern die Orientierung - Beiträge sind allgemein verständlich geschrieben und enthalten nur das notwendige Minimum an mathematischen Formalismen; dadurch ist die Reihe auch geeignet für Leser, die sich nicht hauptsächlich mit den genannten Fachgebieten beschäftigen
REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz, Raima Larter, and Thomas R. Cundari This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. TOPICS COVERED IN Volume 21 iNCLUDE AB INITIO QUANTUM SIMULATION IN SOLID STATE CHEMISTRY; MOLECULAR QUANTUM SIMILARITY; ENUMERATING MOLECULES; VARIABLE SELECTION; BIOMOLECULAR APPLICATIONS OF POISSON-BOLTZMANN METHODS; AND DATA SOURCES AND COMPUTATIONAL APPROACHES FOR GENERATING MODELS OF GENE REGULATORY NETWORKS. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." --JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." --JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling. • Provides background and theory, strategies for using the methods correctly, pitfalls to avoid, applications, and references • Contains updated and comprehensive compendiums of molecular modeling software that list hundreds of programs, services, suppliers and other information that every chemist will find useful • Includes detailed indices on each volume help the reader to quickly discover particular topics • Uses a tutorial manner and non-mathematical style, allowing students and researchers to access computational methods outside their immediate area of expertise
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 31 include: Lattice-Boltzmann Modeling of Multicomponent Systems: An Introduction Modeling Mechanochemistry from First Principles Mapping Energy Transport Networks in Proteins The Role of Computations in Catalysis The Construction of Ab Initio Based Potential Energy Surfaces Uncertainty Quantification for Molecular Dynamics
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding
Computational chemistry is increasingly used in conjunction with organic, inorganic, medicinal, biological, physical, and analytical chemistry, biotechnology, materials science, and chemical physics. This series is essential in keeping those individuals involved in these fields abreast of recent developments in computational chemistry.
THIS VOLUME, LIKE THOSE PRIOR TO IT, FEATURES CHAPTERS BY EXPERTS IN VARIOUS FIELDS OF COMPUTATIONAL CHEMISTRY. TOPICS COVERED IN VOLUME 20 INCLUDE VALENCE THEORY, ITS HISTORY, FUNDAMENTALS, AND APPLICATIONS; MODELING OF SPIN-FORBIDDEN REACTIONS; CALCULATION OF THE ELECTRONIC SPECTRA OF LARGE MOLECULES; SIMULATING CHEMICAL WAVES AND PATTERNS; FUZZY SOFT-COMPUTING METHODS AND THEIR APPLICATIONS IN CHEMISTRY; AND DEVELOPMENT OF COMPUTATIONAL MODELS FOR ENZYMES, TRANSPORTERS, CHANNELS, AND RECEPTORS RELEVANT TO ADME/TOX. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." -JOURNAL OF MOLECULAR GRAPHICS AND MODELING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
REVIEWS IN COMPUTATIONAL CHEMISTRY THE LATEST VOLUME IN THE REVIEWS IN COMPUTATIONAL CHEMISTRY SERIES, THE INVALUABLE REFERENCE TO METHODS AND TECHNIQUES IN COMPUTATIONAL CHEMISTRY Reviews in Computational Chemistry reference texts assist researchers in selecting and applying new computational chemistry methods to their own research. Bringing together writings from leading experts in various fields of computational chemistry, Volume 32 covers topics including global structure optimization, time-dependent density functional tight binding calculations, non-equilibrium self-assembly, cluster prediction, and molecular simulations of microphase formers and deep eutectic solvents. In keeping with previous books in the series, Volume 32 uses a non-mathematical style and tutorial-based approach that provides students and researchers with easy access to computational methods outside their area of expertise. The chapters comprising Volume 32 are connected by two themes: methods that can be broadly applied to a variety of systems, and special considerations required when modeling specific system types. Each in-depth chapter contains background and theory, strategies for using the methods correctly, mini-tutorials and best practices, and critical literature reviews highlighting advanced applications. Essential reading for both newcomers and experts in the area of molecular modeling, this state-of-the-art resource: Covers topics such as non-deterministic global optimization (NDGO) approaches and excited-state dynamics calculations Contains a detailed overview of deep eutectic solvents (DESs) and simulation methods Presents methodologies for investigating chemical systems that form microphases with periodic morphologies such as lamellae and cylinders Features step-by-step tutorials on applying techniques to probe and understand the chemical dynamics exhibited in a system Includes detailed subject indices on each volume in the series and up-to-date compendiums of molecular modeling software, services, programs, suppliers, and other useful information Reviews in Computational Chemistry, Volume 32 is a must-have guide for computational chemists, theoretical chemists, pharmaceutical chemists, biological chemists, chemical engineers, researchers in academia and industry, and graduate students involved in molecular modeling.