Reverse Hypothesis Machine Learning

Reverse Hypothesis Machine Learning

Author: Parag Kulkarni

Publisher: Springer

Published: 2017-03-30

Total Pages: 150

ISBN-13: 3319553127

DOWNLOAD EBOOK

This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts. It can also used by practitioners to develop new machine learning applications to solve problems that require creativity.


Choice Computing: Machine Learning and Systemic Economics for Choosing

Choice Computing: Machine Learning and Systemic Economics for Choosing

Author: Parag Kulkarni

Publisher: Springer Nature

Published: 2022-08-28

Total Pages: 254

ISBN-13: 9811940592

DOWNLOAD EBOOK

This book presents thoughts and pathways to build revolutionary machine learning models with the new paradigm of machine learning to adapt behaviorism. It focuses on two aspects – one focuses on architecting a choice process to lead users on the certain choice path while the second focuses on developing machine learning models based on choice paradigm. This book is divided in three parts where part one deals with human choice and choice architecting models with stories of choice architects. Second part closely studies human choosing models and deliberates on developing machine learning models based on the human choice paradigm. Third part takes you further to look at machine learning based choice architecture. The proposed pioneering choice-based paradigm for machine learning presented in the book will help readers to develop products – help readers to solve problems in a more humanish way and to negotiate with uncertainty in a more graceful but in an objective way. It will help to create unprecedented value for business and society. Further, it will unveil a new paradigm for modern intelligent businesses to embark on the new journey; the journey of transition from shackled feature rich and choice poor systems to feature flexible and choice rich natural behaviors.


Explainable, Interpretable, and Transparent AI Systems

Explainable, Interpretable, and Transparent AI Systems

Author: B. K. Tripathy

Publisher: CRC Press

Published: 2024-08-23

Total Pages: 355

ISBN-13: 1040099939

DOWNLOAD EBOOK

Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.


Proceedings of the 2nd International Conference on Data Engineering and Communication Technology

Proceedings of the 2nd International Conference on Data Engineering and Communication Technology

Author: Anand J. Kulkarni

Publisher: Springer

Published: 2018-10-03

Total Pages: 695

ISBN-13: 9811316104

DOWNLOAD EBOOK

This book features research work presented at the 2nd International Conference on Data Engineering and Communication Technology (ICDECT) held on December 15–16, 2017 at Symbiosis International University, Pune, Maharashtra, India. It discusses advanced, multi-disciplinary research into smart computing, information systems and electronic systems, focusing on innovation paradigms in system knowledge, intelligence and sustainability that can be applied to provide feasible solutions to varied problems in society, the environment and industry. It also addresses the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in a variety of disciplines of computer science and electronics engineering.


Adversarial Machine Learning

Adversarial Machine Learning

Author: Yevgeniy Tu

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 152

ISBN-13: 3031015800

DOWNLOAD EBOOK

The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop. The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.


Machine Learning in Translation

Machine Learning in Translation

Author: Peng Wang

Publisher: Taylor & Francis

Published: 2023-04-12

Total Pages: 219

ISBN-13: 100083865X

DOWNLOAD EBOOK

Machine Learning in Translation introduces machine learning (ML) theories and technologies that are most relevant to translation processes, approaching the topic from a human perspective and emphasizing that ML and ML-driven technologies are tools for humans. Providing an exploration of the common ground between human and machine learning and of the nature of translation that leverages this new dimension, this book helps linguists, translators, and localizers better find their added value in a ML-driven translation environment. Part One explores how humans and machines approach the problem of translation in their own particular ways, in terms of word embeddings, chunking of larger meaning units, and prediction in translation based upon the broader context. Part Two introduces key tasks, including machine translation, translation quality assessment and quality estimation, and other Natural Language Processing (NLP) tasks in translation. Part Three focuses on the role of data in both human and machine learning processes. It proposes that a translator’s unique value lies in the capability to create, manage, and leverage language data in different ML tasks in the translation process. It outlines new knowledge and skills that need to be incorporated into traditional translation education in the machine learning era. The book concludes with a discussion of human-centered machine learning in translation, stressing the need to empower translators with ML knowledge, through communication with ML users, developers, and programmers, and with opportunities for continuous learning. This accessible guide is designed for current and future users of ML technologies in localization workflows, including students on courses in translation and localization, language technology, and related areas. It supports the professional development of translation practitioners, so that they can fully utilize ML technologies and design their own human-centered ML-driven translation workflows and NLP tasks.


Adversarial Machine Learning

Adversarial Machine Learning

Author: Anthony D. Joseph

Publisher: Cambridge University Press

Published: 2019-02-21

Total Pages: 341

ISBN-13: 1107043468

DOWNLOAD EBOOK

This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.


Human + Machine, Updated and Expanded

Human + Machine, Updated and Expanded

Author: Paul R. Daugherty

Publisher: Harvard Business Press

Published: 2024-09-10

Total Pages: 177

ISBN-13: 1647827213

DOWNLOAD EBOOK

AI—including generative AI—is radically transforming business. Are you ready? Accenture technology leaders Paul Daugherty and Jim Wilson provide crucial insights and advice to help you meet the challenge. Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now—in software that senses what we need, supply chains that "think" in real time, and now generative AI that is radically reshaping work and productivity. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on? In this updated and expanded edition of Human + Machine—including a new chapter on gen AI—Accenture technology leaders Paul Daugherty and Jim Wilson show that the essence of the AI paradigm shift is the transformation of all business processes within an organization, whether related to breakthrough innovation, everyday customer service, or personal productivity habits. As humans and smart machines collaborate ever more closely, work processes become more fluid and adaptive, enabling companies to change them on the fly—or completely reimagine them. Based on the authors' experience and research with fifteen hundred organizations, the book reveals how companies are using the new rules of AI to leap ahead on innovation and profitability and what you can do to achieve similar results. It describes six entirely new types of hybrid human + machine roles that every company must develop, and it includes a "leader's guide" with the five crucial principles required to become an AI-fueled business. Human + Machine provides the missing and much-needed management playbook for success in the new age of AI.


Impact of Smart Technologies and Artificial Intelligence (AI) Paving Path Towards Interdisciplinary Research in the Fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management - Challenges and Opportunities

Impact of Smart Technologies and Artificial Intelligence (AI) Paving Path Towards Interdisciplinary Research in the Fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management - Challenges and Opportunities

Author: Dr. Sundari Suresh

Publisher: Shanlax Publications

Published:

Total Pages: 332

ISBN-13: 9391373127

DOWNLOAD EBOOK

This e-ISBN collection of 34 chapters draws on the diverse insights of the opportunities and emerging challenges, changes in the smart technologies and artificial intelligence{AI} paving path towards interdisciplinary research in the fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management. It offers decision-makers a comprehensive picture of the impact of Smart technologies and Artificial Intelligence (AI) expected in the long-term changes, and inspiration to leverage the opportunities that offer to improve the state of education. Academicians must find and establish a new equilibrium and a new normal for learning amid the present challenges.