Residues and Traces of Differential Forms via Hochschild Homology

Residues and Traces of Differential Forms via Hochschild Homology

Author: Joseph Lipman

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 106

ISBN-13: 0821850709

DOWNLOAD EBOOK

Requiring only some understanding of homological algebra and commutative ring theory, this book gives those who have encountered Grothendieck residues in geometry or complex analysis an understanding of residues, as well as an appreciation of Hochschild homology.


Traces of Differential Forms and Hochschild Homology

Traces of Differential Forms and Hochschild Homology

Author: Reinhold Hübl

Publisher: Springer

Published: 2006-12-08

Total Pages: 115

ISBN-13: 3540461256

DOWNLOAD EBOOK

This monograph provides an introduction to, as well as a unification and extension of the published work and some unpublished ideas of J. Lipman and E. Kunz about traces of differential forms and their relations to duality theory for projective morphisms. The approach uses Hochschild-homology, the definition of which is extended to the category of topological algebras. Many results for Hochschild-homology of commutative algebras also hold for Hochschild-homology of topological algebras. In particular, after introducing an appropriate notion of completion of differential algebras, one gets a natural transformation between differential forms and Hochschild-homology of topological algebras. Traces of differential forms are of interest to everyone working with duality theory and residue symbols. Hochschild-homology is a useful tool in many areas of k-theory. The treatment is fairly elementary and requires only little knowledge in commutative algebra and algebraic geometry.


Local Cohomology and Its Applications

Local Cohomology and Its Applications

Author: Gennady Lybeznik

Publisher: CRC Press

Published: 2001-10-18

Total Pages: 359

ISBN-13: 1482275767

DOWNLOAD EBOOK

This volume collects presentations from the international workshop on local cohomology held in Guanajuato, Mexico, including expanded lecture notes of two minicourses on applications in equivariant topology and foundations of duality theory, and chapters on finiteness properties, D-modules, monomial ideals, combinatorial analysis, and related topics.


Regular Differential Forms

Regular Differential Forms

Author: Ernst Kunz

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 166

ISBN-13: 0821850857

DOWNLOAD EBOOK

Suitable for students and researchers in commutative algebra, algebraic geometry, and neighboring disciplines, this book introduces various sheaves of differential forms for equidimensional morphisms of finite type between noetherian schemes, the most important being the sheaf of regular differential forms.


Triangulated Categories

Triangulated Categories

Author: Thorsten Holm

Publisher: Cambridge University Press

Published: 2010-06-24

Total Pages: 473

ISBN-13: 1139488880

DOWNLOAD EBOOK

A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.


K-theory in Algebra, Analysis and Topology

K-theory in Algebra, Analysis and Topology

Author: Guillermo Cortiñas

Publisher: American Mathematical Soc.

Published: 2020

Total Pages: 400

ISBN-13: 1470450267

DOWNLOAD EBOOK

This volume contains the proceedings of the ICM 2018 satellite school and workshop K-theory conference in Argentina. The school was held from July 16–20, 2018, in La Plata, Argentina, and the workshop was held from July 23–27, 2018, in Buenos Aires, Argentina. The volume showcases current developments in K-theory and related areas, including motives, homological algebra, index theory, operator algebras, and their applications and connections. Papers cover topics such as K-theory of group rings, Witt groups of real algebraic varieties, coarse homology theories, topological cyclic homology, negative K-groups of monoid algebras, Milnor K-theory and regulators, noncommutative motives, the classification of C∗-algebras via Kasparov's K-theory, the comparison between full and reduced C∗-crossed products, and a proof of Bott periodicity using almost commuting matrices.


Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes

Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes

Author: Leovigildo Alonso Tarrío

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 138

ISBN-13: 0821819429

DOWNLOAD EBOOK

This volume contains three papers on the foundations of Grothendieck duality on Noetherian formal schemes and on not-necessarily-Noetherian ordinary schemes. The first paper presents a self-contained treatment for formal schemes which synthesizes several duality-related topics, such as local duality, formal duality, residue theorems, dualizing complexes, etc. Included is an exposition of properties of torsion sheaves and of limits of coherent sheaves. A second paper extends Greenlees-May duality to complexes on formal schemes. This theorem has important applications to Grothendieck duality. The third paper outlines methods for eliminating the Noetherian hypotheses. A basic role is played by Kiehl's theorem affirming conservation of pseudo-coherence of complexes under proper pseudo-coherent maps. This work gives a detailed introduction to the subject of Grothendieck Duality. The approach is unique in its presentation of a complex series of special cases that build up to the main results.


Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Author: Eric Grinberg

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 524

ISBN-13: 0821811487

DOWNLOAD EBOOK

This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.


Differential Geometry: The Interface between Pure and Applied Mathematics

Differential Geometry: The Interface between Pure and Applied Mathematics

Author: Mladen Luksic

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 286

ISBN-13: 082185075X

DOWNLOAD EBOOK

Contains papers that represent the proceedings of a conference entitled 'Differential Geometry: The Interface Between Pure and Applied Mathematics', which was held in San Antonio, Texas, in April 1986. This work covers a range of applications and techniques in such areas as ordinary differential equations, Lie groups, algebra and control theory.


Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations

Author: Mario Milman

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 144

ISBN-13: 0821851136

DOWNLOAD EBOOK

Illuminates the relationship between harmonic analysis and partial differential equations. This book covers topics such as application of fully nonlinear, uniformly elliptic equations to the Monge Ampere equation; and estimates for Green functions for the purpose of studying Dirichlet problems for operators in non-divergence form.