Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Author: Nikolaos Galatos

Publisher: Elsevier

Published: 2007-04-25

Total Pages: 532

ISBN-13: 0080489648

DOWNLOAD EBOOK

The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.


Residuated Structures in Algebra and Logic

Residuated Structures in Algebra and Logic

Author: George Metcalfe

Publisher: American Mathematical Society

Published: 2023-11-06

Total Pages: 282

ISBN-13: 1470469855

DOWNLOAD EBOOK

This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.


Orthomodular Lattices

Orthomodular Lattices

Author: L. Beran

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 9400952155

DOWNLOAD EBOOK

Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. Bowever, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programmi ng profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-s.cale order", which are almost impossible to fit into the existing classifica tion schemes. They draw upon widely different sections of mathe matics.


Proof Theory and Algebra in Logic

Proof Theory and Algebra in Logic

Author: Hiroakira Ono

Publisher: Springer

Published: 2019-08-02

Total Pages: 164

ISBN-13: 9811379971

DOWNLOAD EBOOK

This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.


Non-Classical Logics and their Applications to Fuzzy Subsets

Non-Classical Logics and their Applications to Fuzzy Subsets

Author: Ulrich Höhle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 391

ISBN-13: 9401102155

DOWNLOAD EBOOK

Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.


Lattices and Ordered Algebraic Structures

Lattices and Ordered Algebraic Structures

Author: T.S. Blyth

Publisher: Springer Science & Business Media

Published: 2005-04-18

Total Pages: 311

ISBN-13: 1852339055

DOWNLOAD EBOOK

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS


Trends in Logic

Trends in Logic

Author: Vincent F. Hendricks

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 387

ISBN-13: 9401735980

DOWNLOAD EBOOK

In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.


Non-commutative Multiple-Valued Logic Algebras

Non-commutative Multiple-Valued Logic Algebras

Author: Lavinia Corina Ciungu

Publisher: Springer Science & Business Media

Published: 2013-08-23

Total Pages: 284

ISBN-13: 3319015893

DOWNLOAD EBOOK

This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects. A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing. Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.


Mathematics Behind Fuzzy Logic

Mathematics Behind Fuzzy Logic

Author: Esko Turunen

Publisher: Physica

Published: 1999-09-24

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK

Many results in fuzzy logic depend on the mathematical structure the truth value set obeys. In this textbook the algebraic foundations of many-valued and fuzzy reasoning are introduced. The book is self-contained, thus no previous knowledge in algebra or in logic is required. It contains 134 exercises with complete answers, and can therefore be used as teaching material at universities for both undergraduated and post-graduated courses. Chapter 1 starts from such basic concepts as order, lattice, equivalence and residuated lattice. It contains a full section on BL-algebras. Chapter 2 concerns MV-algebra and its basic properties. Chapter 3 applies these mathematical results on Lukasiewicz-Pavelka style fuzzy logic, which is studied in details; besides semantics, syntax and completeness of this logic, a lot of examples are given. Chapter 4 shows the connection between fuzzy relations, approximate reasoning and fuzzy IF-THEN rules to residuated lattices.


Hiroakira Ono on Substructural Logics

Hiroakira Ono on Substructural Logics

Author: Nikolaos Galatos

Publisher: Springer Nature

Published: 2021-12-13

Total Pages: 382

ISBN-13: 3030769208

DOWNLOAD EBOOK

This volume is dedicated to Hiroakira Ono life’s work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.