The vitality of the innovation economy in the United States depends on the availability of a highly educated technical workforce. A key component of this workforce consists of engineers, engineering technicians, and engineering technologists. However, unlike the much better-known field of engineering, engineering technology (ET) is unfamiliar to most Americans and goes unmentioned in most policy discussions about the US technical workforce. Engineering Technology Education in the United States seeks to shed light on the status, role, and needs of ET education in the United States.
This open access book is dedicated to exploring methods and charting the course for enhancing engineering education in and beyond 2023. It delves into the idea that education, coupled with social connections, is indispensable for a more profound comprehension of the world and the creation of an improved quality of life. The book serves as a conduit for incorporating complex problem-solving into engineering education across various formats. It offers a structured approach for tackling complex issues, comparing an array of techniques for managing complexity within the realm of engineering education. Moreover, the book scrutinizes several complex case studies derived from the United Nation's Sustainable Development Goals. Additionally, it explores intricate problem-solving and curriculum change case studies specific to engineering education from Harvard University, the University of Technology Sydney, and Aalborg University.
The way in which academic engineering research is financed and public expectations for the outcomes from such research are changing at an unprecedented rate. The decrease in support of defense-related research, coupled with the realization that many U.S. technological products are no longer competitive in the global market, has sent a shock wave through research universities that train engineers. This book argues for several concrete actions on the part of universities, government, and industry to ensure the flow and relevance of technical talent to meet national social and economic goals, to maintain a position of leadership in the global economy, and to preserve and enhance the nation's engineering knowledge base.
A look at engineering education today— with an eye to tomorrow Engineering education is in flux. While it is increasingly important that engineers be innovative, entrepreneurial, collaborative, and able to work globally, there are virtually no programs that prepare students to meet these new challenges. Shaping Our World: Engineering Education for the 21st Century seeks to fill this void, exploring revolutionary approaches to the current engineering curriculum that will bring it fully up to date and prepare the next generation of would-be engineers for real and lasting professional success. Comprised of fourteen chapters written by respected experts on engineering education, the book is divided into three parts that address the need for change in the way engineering is taught; specific innovations that have been tested, why they matter, and how they can be more broadly instituted; and the implications for further changes. Designed to aid engineering departments in their transition towards new modes of learning and leadership in engineering education, the book describes how to put into practice educational programs that are aligned with upcoming changes, such as those proposed in the NAE's Engineer of 2020 reports. Addressing the need to change engineering education to meet the demands of the 21st century head on, Shaping Our World condenses current discussions, research, and trials regarding new methods into specific, actionable calls for change.
Like all enthusiastic teachers, you want your students to see the connections between important science concepts so they can grasp how the world works now-- and maybe even make it work better in the future. But how exactly do you help them learn and apply these core ideas? Just as its subtitle says, this important book aims to reshape your approach to teaching and your students' way of learning. Building on the foundation provided by A Framework for K- 12 Science Education, which informed the development of the Next Generation Science Standards, the book' s four sections cover these broad areas: 1. Physical science core ideas explain phenomena as diverse as why water freezes and how information can be sent around the world wirelessly. 2. Life science core ideas explore phenomena such as why children look similar but not identical to their parents and how human behavior affects global ecosystems. 3. Earth and space sciences core ideas focus on complex interactions in the Earth system and examine phenomena as varied as the big bang and global climate change. 4. Engineering, technology, and applications of science core ideas highlight engineering design and how it can contribute innovative solutions to society' s problems. Disciplinary Core Ideas can make your science lessons more coherent and memorable, regardless of what subject matter you cover and what grade you teach. Think of it as a conceptual tool kit you can use to help your students learn important and useful science now-- and continue learning throughout their lives.
"This book covers the use of technology and the development of tools to support content exchange, delivery, collaboration and pedagogy used in distance education delivery"--Provided by publisher.
This open access book examines how the social sciences can be integrated into the praxis of engineering and science, presenting unique perspectives on the interplay between engineering and social science. Motivated by the report by the Commission on Humanities and Social Sciences of the American Association of Arts and Sciences, which emphasizes the importance of social sciences and Humanities in technical fields, the essays and papers collected in this book were presented at the NSF-funded workshop ‘Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation’, which brought together a singular collection of people, topics and disciplines. The book is split into three parts: A. Meeting at the Middle: Challenges to educating at the boundaries covers experiments in combining engineering education and the social sciences; B. Engineers Shaping Human Affairs: Investigating the interaction between social sciences and engineering, including the cult of innovation, politics of engineering, engineering design and future of societies; and C. Engineering the Engineers: Investigates thinking about design with papers on the art and science of science and engineering practice.
The traditional educational landscape often struggles to keep pace with the rapid advancements in technology and the evolving needs of both students and educators. This challenge has given rise to a crucial question; how can we effectively harness the full potential of next-generation educational technologies to shape a brighter future for education? A solution to this very question can be found within the pages ofReshaping Learning with Next Generation Educational Technologies. This book delves deep into the convergence of artificial intelligence (AI), disruptive technologies, and cutting-edge educational practices, revealing their transformative power. Through practical examples, visionary insights, and thought-provoking analyses, it provides a roadmap for educators, researchers, and professionals to navigate this changing educational landscape. It's a call to action, urging academia to seize the transformative potential of these groundbreaking technologies.