This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.
Researches and Applications of Artificial Intelligence to Mitigate Pandemics: History, Diagnostic Tools, Epidemiology, Healthcare, and Technology offers readers an interdisciplinary view of state-of-art research related to the COVID-19 outbreak, with a focus on tactics employed to model the number of cases of COVID-19 (time series modeling), models employed to diagnostics COVID-19 based on images, and the panoramic of COVID-19 since its discovery and up to this book's publication. This book showcases the algorithms and models available to manage pandemic data, the role of AI, IoT and Mathematical Modeling, how to prevent and fight COVID-19, and the existing medical, social and pharmaceutical support. Chapters cover methods and protocols, the basics and history of diseases, the fast diagnosis of disease with different automated algorithms and artificial intelligence tools and techniques, the methods of handling epidemiology for mitigating the spread of disease, artificial intelligence and mathematical modeling techniques, and how mental and physical health is affected with social media usage. - Explains novel and hybrid high quality artificial intelligence methodologies, techniques, algorithms, architectures, tools and methods to cope with pandemics - Covers rapid point-of-care diagnostics, presents details on varied mathematical models developed to control epidemiology, and lists existing measures to disseminate the spread of infection using computational methods - Highlights the negative effect of social media and other sources by applying preventive measures to combat depression and anxiety
This book is dedicated to addressing the major challenges in fighting COVID-19 using artificial intelligence (AI) and machine learning (ML) – from cost and complexity to availability and accuracy. The aim of this book is to focus on both the design and implementation of AI-based approaches in proposed COVID-19 solutions that are enabled and supported by sensor networks, cloud computing, and 5G and beyond. This book presents research that contributes to the application of ML techniques to the problem of computer communication-assisted diagnosis of COVID-19 and similar diseases. The authors present the latest theoretical developments, real-world applications, and future perspectives on this topic. This book brings together a broad multidisciplinary community, aiming to integrate ideas, theories, models, and techniques from across different disciplines on intelligent solutions/systems, and to inform how cognitive systems in Next Generation Networks (NGN) should be designed, developed, and evaluated while exchanging and processing critical health information. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies.
The book demonstrates unique and useful applications of AI, in particular COVID-19 and examines the challenges in the advancement of artificial intelligence in advance medical science. It will be useful to undergrad and postgraduate students, analysts, academicians, and high quality researches between digital healthcare technologies.
This book tackles the recent research directions in using the newly emerged technologies during the era of COVID-19 pandemic. It mainly focuses on using emerging technologies and their impact on health care, education, and society. It also provides insights into the current challenges and constraints in using technologies during the era of COVID-19 pandemic and exposes new opportunities for future research in the domain.
This book examines how the wonders of AI have contributed to the battle against COVID-19. Just as history repeats itself, so do epidemics and pandemics. In the face of the novel coronavirus disease, COVID-19, the book explores whether, in this digital era where artificial intelligence is successfully applied in all areas of industry, we are doing any better than our ancestors did in dealing with pandemics. One of the most contagious diseases ever known, COVID-19 is spreading like wildfire around and has cost thousands of human lives. The book discusses how AI can help fight this deadly virus, from early warnings, prompt emergency responses, and critical decision-making to surveillance drones. Serving as a technical reference resource, data analytic tutorial and a chronicle of the application of AI in epidemics, this book will appeal to academics, students, data scientists, medical practitioners, and anybody who is concerned about this global epidemic.
Pandemics are disruptive. Thus, there is a need to prepare and plan actions in advance for identifying, assessing, and responding to such events to manage uncertainty and support sustainable livelihood and wellbeing. A detailed assessment of a continuously evolving situation needs to take place, and several aspects must be brought together and examined before the declaration of a pandemic even happens. Various health organizations; crisis management bodies; and authorities at local, national, and international levels are involved in the management of pandemics. There is no better time to revisit current approaches to cope with these new and unforeseen threats. As countries must strike a fine balance between protecting health, minimizing economic and social disruption, and respecting human rights, there has been an emerging interest in lessons learned and specifically in revisiting past and current pandemic approaches. Such approaches involve strategies and practices from several disciplines and fields including healthcare, management, IT, mathematical modeling, and data science. Using data science to advance in-situ practices and prompt future directions could help alleviate or even prevent human, financial, and environmental compromise, and loss and social interruption via state-of-the-art technologies and frameworks. Data Science Advancements in Pandemic and Outbreak Management demonstrates how strategies and state-of-the-art IT have and/or could be applied to serve as the vehicle to advance pandemic and outbreak management. The chapters will introduce both technical and non-technical details of management strategies and advanced IT, data science, and mathematical modelling and demonstrate their applications and their potential utilization within the identification and management of pandemics and outbreaks. It also prompts revisiting and critically reviewing past and current approaches, identifying good and bad practices, and further developing the area for future adaptation. This book is ideal for data scientists, data analysts, infectious disease experts, researchers studying pandemics and outbreaks, IT, crisis and disaster management, academics, practitioners, government officials, and students interested in applicable theories and practices in data science to mitigate, prepare for, respond to, and recover from future pandemics and outbreaks.
Governments, businesses, and individuals around the world are thinking about what happens after the COVID-19 pandemic. Can we hope to not only ward off another COVID-like disaster but also eliminate all respiratory diseases, including the flu? Bill Gates, one of our greatest and most effective thinkers and activists, believes the answer is yes. The author of the #1 New York Times best seller How to Avoid a Climate Disaster lays out clearly and convincingly what the world should have learned from COVID-19 and what all of us can do to ward off another catastrophe like it. Relying on the shared knowledge of the world’s foremost experts and on his own experience of combating fatal diseases through the Gates Foundation, Gates first helps us understand the science of infectious diseases. Then he shows us how the nations of the world, working in conjunction with one another and with the private sector, how we can prevent a new pandemic from killing millions of people and devastating the global economy. Here is a clarion call—strong, comprehensive, and of the gravest importance.