Trends in Representation Theory of Algebras and Related Topics

Trends in Representation Theory of Algebras and Related Topics

Author: Andrzej Skowroński

Publisher: European Mathematical Society

Published: 2008

Total Pages: 732

ISBN-13: 9783037190623

DOWNLOAD EBOOK

This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.


Representation Theory of Algebras and Related Topics

Representation Theory of Algebras and Related Topics

Author: Raymundo Bautista

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 428

ISBN-13: 9780821803967

DOWNLOAD EBOOK

These proceedings report a number of lecture series delivered during the Workshop on Representation Theory of Algebras and Related Topics held at Universidad Nacional Autonoma de Mexico (UNAM) in August 1994. The workshop was dedicated to recent advances in the field and its interaction with other areas of mathematics, such as algebraic geometry, ring theory, and representation of groups. The program of the Workshop consisted of 9 lecture series. In addition there was a Tame Day consisting of 6 lectures reporting on the recent advances in the study of tame algebras and their module categories. During the Workshop there was a session devoted to the exhibition of computer programs developed by participants. These programs are implementations of algorithms related to the calculation of important aspects of algebras and their module categories.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Trends in Representation Theory of Algebras and Related Topics

Trends in Representation Theory of Algebras and Related Topics

Author: José Antonio de la Peña

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 282

ISBN-13: 0821838180

DOWNLOAD EBOOK

This book is based on lectures given during a Workshop on Representations of Algebras and Related Topics. Some additional articles are included in order to complete a panoramic view of the main trends of the subject. The volume contains original presentations by leading algebraists addressed to specialists as well as to a broader mathematical audience. The articles include new proofs, examples, and detailed arguments. Topics under discussion include moduli spaces associated to quivers, canonical basis of quantum algebras, categorifications and derived categories, $A$-infinity algebras and functor categories, cluster algebras, support varieties for modules and complexes, the Gabriel-Roiter measure for modules, and selfinjective algebras.


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory

Author: J.E. Humphreys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 189

ISBN-13: 1461263980

DOWNLOAD EBOOK

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.


Lie Algebras, Vertex Operator Algebras, and Related Topics

Lie Algebras, Vertex Operator Algebras, and Related Topics

Author: Katrina Barron

Publisher: American Mathematical Soc.

Published: 2017-08-15

Total Pages: 282

ISBN-13: 1470426668

DOWNLOAD EBOOK

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.


Basic Representation Theory of Algebras

Basic Representation Theory of Algebras

Author: Ibrahim Assem

Publisher: Springer Nature

Published: 2020-04-03

Total Pages: 318

ISBN-13: 3030351181

DOWNLOAD EBOOK

This textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander–Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander–Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book.


Representations of Algebras and Related Topics

Representations of Algebras and Related Topics

Author: Ragnar-Olaf Buchweitz

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 418

ISBN-13: 0821834150

DOWNLOAD EBOOK

Twelve-year-old Molly and her ten-year-old brother, Michael, have never liked their younger stepsister, Heather. Ever since their parents got married, she's made Molly and Michael's life miserable. Now their parents have moved them all to the country to live in a house that used to be a church, with a cemetery in the backyard. If that's not bad enough, Heather starts talking to a ghost named Helen and warning Molly and Michael that Helen is coming for them. Molly feels certain Heather is in some kind of danger, but every time she tries to help, Heather twists things around to get her into trouble. It seems as if things can't get any worse. But they do -- when Helen comes. "Genuinely scary, complete with dark secrets from the past, unsettled graves, and a very real ghost." -- The Bulletin of the Center for Children's Books "An unusually scary, well-crafted ghost fantasy." -- Kirkus Reviews


Elements of the Representation Theory of Associative Algebras: Volume 1

Elements of the Representation Theory of Associative Algebras: Volume 1

Author: Ibrahim Assem

Publisher: Cambridge University Press

Published: 2006-02-13

Total Pages: 34

ISBN-13: 1139443186

DOWNLOAD EBOOK

This first part of a two-volume set offers a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The authors present this topic from the perspective of linear representations of finite-oriented graphs (quivers) and homological algebra. The self-contained treatment constitutes an elementary, up-to-date introduction to the subject using, on the one hand, quiver-theoretical techniques and, on the other, tilting theory and integral quadratic forms. Key features include many illustrative examples, plus a large number of end-of-chapter exercises. The detailed proofs make this work suitable both for courses and seminars, and for self-study. The volume will be of great interest to graduate students beginning research in the representation theory of algebras and to mathematicians from other fields.