This new edition of Kovalev's renowned text (first English edition, 1965) presents all the irreducible representations (IRs) and irreducible corepresentations (ICRs) for the 230 crystallographic space groups. In order to give readers the opportunity of representing generally the entire crystallographic symmetry, the method of inducing an IR of the local groups is presented first, and then complete lists of induced representations (InRs) which allow the calculation of the microstructure of any crystal (already known or not yet discovered, but geometrically not forbidden) in any physical question. For research students and researchers in theoretical aspects of solid state physics, crystallography, and space group theory. Translated from the second Russian edition of 1987. Annotation copyright by Book News, Inc., Portland, OR
This classic book gives, in extensive tables, the irreducible representations of the crystallographic point groups and space groups. These are useful in studying the eigenvalues and eigenfunctions of a particle or quasi-particle in a crystalline solid. The theory is extended to the corepresentations of the Shubnikov groups.
This book is by far the most comprehensive treatment of point and space groups, and their meaning and applications. Its completeness makes it especially useful as a text, since it gives the instructor the flexibility to best fit the class and goals. The instructor, not the author, decides what is in the course. And it is the prime book for reference, as material is much more likely to be found in it than in any other book; it also provides detailed guides to other sources. Much of what is taught is folklore, things everyone knows are true, but (almost?) no one knows why, or has seen proofs, justifications, rationales or explanations. (Why are there 14 Bravais lattices, and why these? Are the reasons geometrical, conventional or both? What determines the Wigner–Seitz cells? How do they affect the number of Bravais lattices? Why are symmetry groups relevant to molecules whose vibrations make them unsymmetrical? And so on). Here these analyses are given, interrelated, and in-depth. The understanding so obtained gives a strong foundation for application and extension. Assumptions and restrictions are not merely made explicit, but also emphasized. In order to provide so much information, details and examples, and ways of helping readers learn and understand, the book contains many topics found nowhere else, or only in obscure articles from the distant past. The treatment is (often completely) different from those elsewhere. At least in the explanations, and usually in many other ways, the book is completely new and fresh. It is designed to inform, educate and make the reader think. It strongly emphasizes understanding. The book can be used at many levels, by many different classes of readers — from those who merely want brief explanations (perhaps just of terminology), who just want to skim, to those who wish the most thorough understanding. Request Inspection Copy
International Tables for Crystallography are no longer available for purchase from Springer. For further information please contact Wiley Inc. (follow the link on the right hand side of this page). Volume B presents accounts of the numerous aspects of reciprocal space in crystallographic research. After an introductory chapter, Part 1 presents the reader with an account of structure-factor formalisms, an extensive treatment of the theory, algorithms and crystallographic applications of Fourier methods, and fundamental as well as advanced treatments of symmetry in reciprocal space. In Part 2, these general accounts are followed by detailed expositions of crystallographic statistics, the theory of direct methods, Patterson techniques, isomorphous replacement and anomalous scattering, and treatments of the role of electron microscopy and diffraction in crystal structure determination, including applications of direct methods to electron crystallography. Part 3 deals with applications of reciprocal space to molecular geometry and `best'-plane calculations, and contains a treatment of the principles of molecular graphics and modelling and their applications. A convergence-acceleration method of importance in the computation of approximate lattice sums is presented and the part concludes with a discussion of the Ewald method. Part 4 contains treatments of various diffuse-scattering phenomena arising from crystal dynamics, disorder and low dimensionality (liquid crystals), and an exposition of the underlying theories and/or experimental evidence. Polymer crystallography and reciprocal-space images of aperiodic crystals are also treated. Part 5 of the volume contains introductory treatments of the theory of the interaction of radiation with matter (dynamical theory) as applied to X-ray, electron and neutron diffraction techniques. The simplified trigonometric expressions for the structure factors in the 230 three-dimensional space groups, which appeared in Volume I of International Tables for X-ray Crystallography, are now given in Appendix 1.4.3 to Chapter 1.4 of this volume. Volume B is a vital addition to the library of scientists engaged in crystal structure determination, crystallographic computing, crystal physics and other fields of crystallographic research. Graduate students specializing in crystallography will find much material suitable for self-study and a rich source of references to the relevant literature.
This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-temperature superconductors, phase transitions, semiconductor superlattices, incommensurate modulation, and icosahedral symmetry.
Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.
Reissue of Encyclopedia of Physics/Handbuch der Physik, Vol. XXV/2b I am very pleased that my book is now to be reprinted and rebound in a new format which should make it accessible at a modest price to students and active researchers in condensed matter physics. In writing this book I had in mind an audience of physicists and chemists with no previous deep exposure to symmetry analysis of crystalline matter, non to the use of symmetry in simplifying and refining predictions of the results of optical experiments. Hence the book was written to explain and illustrate in all necessary detail how to: 1) describe the space group symmetry in terms of space group symmetry operations; 2) obtain irreducible representations and selection rules for optical infra-red and Raman and other transition processes. On the physical side I redeveloped the traditional theory of classical and quantum lattice dynamics, illustrating how space-time symmetry designations in the equations of motion can: 1) simplify and rationalize calculations of the classical eigenvectors of the dynamical equation; 2) permit classification of the eigenstates of the quantum lattice-dynamic pro blem; 3) give specific selection rules for optical infra-red and Raman lattice processes, and thus make "go, no-go" predictions including polarization of absorbed or scattered radiation; and 4) simplify the modern many-body theories of optical processes.
Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. This book gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group.
This book is devoted to the construction of space group representations, their tabulation, and illustration of their use. Representation theory of space groups has a wide range of applications in modern physics and chemistry, including studies of electron and phonon spectra, structural and magnetic phase transitions, spectroscopy, neutron scattering, and superconductivity. The book presents a clear and practical method of deducing the matrices of all irreducible representations, including double-valued, and tabulates the matrices of irreducible projective representations for all 32 crystallographic point groups. One obtains the irreducible representations of all 230 space groups by multiplying the matrices presented in these compact and convenient to use tables by easily computed factors. A number of applications to the electronic band structure calculations are illustrated through real-life examples of different crystal structures. The book's content is accessible to both graduate and advanced undergraduate students with elementary knowledge of group theory and is useful to a wide range of experimentalists and theorists in materials and solid-state physics.