Increases in populations have created an increasing demand for food crops while increases in demand for biofuels have created an increase in demand for fuel crops. What has not increased is the amount of croplands and their productivity. These and many other factors such as decreasing water resources in a changing climate have created a crisis like
The environmental and economic importance of monitoring forests and agricultural resources has allowed remote sensing to be increasingly in the development of products and services responding to user needs.This volume presents the main applications in remote sensing for agriculture and forestry, including the primary soil properties, the estimation of the vegetation's biophysical variables, methods for mapping land cover, the contribution of remote sensing for crop and water monitoring, and the estimation of the forest cover properties (cover dynamic, height, biomass).This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD), engineers and scientists, specialists in remote sensing applied to agriculture and forestry.Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of radar imaging techniques. - Provides clear and concise descriptions of modern remote sensing methods - Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications - Provides chapters on physical principles, measurement, and data processing for each technique described - Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made
Applications of Remote Sensing in Agriculture contains the proceedings of the 48th Easter School in Agricultural Science, held at the University of Nottingham on April 3-7, 1989. The meeting invites 146 delegates from over 22 countries and contributions to this book come from nine countries. This book generally presents a review of the achievements of remote sensing in agriculture, establishes the state of the art, and gives pointers to developments. This text is organized into seven parts, wherein Parts I-III cover the principles of remote sensing, climate, soil, land classification, and crop inventories. Productivity; stress; techniques for agricultural applications; and opportunities, progress, and prospects in the field of remote sensing in agriculture are also discussed.
A volume in the three-volume Remote Sensing Handbook series, Remote Sensing of Water Resources, Disasters, and Urban Studies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Remotely Sensed Data Characterization, Classification, and Accuracies, and Land Reso
Volume III of the Six Volume Remote Sensing Handbook, Second Edition, is focused on agriculture; food security; vegetation; phenology; rangelands; soils; and global biomass modeling, mapping, and monitoring using multi-sensor remote sensing. It discusses the application of remote sensing in agriculture systems analysis, phenology, cropland mapping and modeling, terrestrial vegetation studies, physically based models, food and water security, precision farming, crop residues, global view of rangelands, and soils. This thoroughly revised and updated volume draws on the expertise of a diverse array of leading international authorities in remote sensing and provides an essential resource for researchers at all levels interested in using remote sensing. It integrates discussions of remote sensing principles, data, methods, development, applications, and scientific and social context. FEATURES Provides the most up-to-date comprehensive coverage of remote sensing science in agriculture, vegetation, and soil studies. Discusses and analyzes data from old and new generations of satellites and sensors spread across 60 years. Provides comprehensive assessment of modeling, mapping, and monitoring agricultural crops, vegetation, and soils from wide array of sensors, methods, and techniques. Includes numerous case studies on advances and applications at local, regional, and global scales. Introduces advanced methods in remote sensing such as machine learning, cloud computing, and AI. Highlights scientific achievements over the last decade and provides guidance for future developments. This volume is an excellent resource for the entire remote sensing and GIS community. Academics, researchers, undergraduate and graduate students, as well as practitioners, decision makers, and policymakers, will benefit from the expertise of the professionals featured in this book, and their extensive knowledge of new and emerging trends.
A volume in the three-volume Remote Sensing Handbook series, Land Resources Monitoring, Modeling, and Mapping with Remote Sensing documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Remotely Sensed Data Characterization, Classification, and Accuracies, and Remo
Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
New evidence this year corroborates the rise in world hunger observed in this report last year, sending a warning that more action is needed if we aspire to end world hunger and malnutrition in all its forms by 2030. Updated estimates show the number of people who suffer from hunger has been growing over the past three years, returning to prevailing levels from almost a decade ago. Although progress continues to be made in reducing child stunting, over 22 percent of children under five years of age are still affected. Other forms of malnutrition are also growing: adult obesity continues to increase in countries irrespective of their income levels, and many countries are coping with multiple forms of malnutrition at the same time – overweight and obesity, as well as anaemia in women, and child stunting and wasting.
Volume I of the Six Volume Remote Sensing Handbook, Second Edition, is focused on satellites and sensors including radar, light detection and ranging (LiDAR), microwave, hyperspectral, unmanned aerial vehicles (UAVs), and their applications. It discusses data normalization and harmonization, accuracies, and uncertainties of remote sensing products, global navigation satellite system (GNSS) theory and practice, crowdsourcing, cloud computing environments, Google Earth Engine, and remote sensing and space law. This thoroughly revised and updated volume draws on the expertise of a diverse array of leading international authorities in remote sensing and provides an essential resource for researchers at all levels interested in using remote sensing. It integrates discussions of remote sensing principles, data, methods, development, applications, and scientific and social context. FEATURES Provides the most up-to-date comprehensive coverage of remote sensing science. Discusses and analyzes data from old and new generations of satellites and sensors. Provides comprehensive methods and approaches for remote sensing data normalization, standardization, and harmonization. Includes numerous case studies on advances and applications at local, regional, and global scales. Introduces advanced methods in remote sensing such as machine learning, cloud computing, and AI. Highlights scientific achievements over the last decade and provides guidance for future developments. This volume is an excellent resource for the entire remote sensing and GIS community. Academics, researchers, undergraduate and graduate students, as well as practitioners, decision-makers, and policymakers, will benefit from the expertise of the professionals featured in this book, and their extensive knowledge of new and emerging trends.
Volume V of theSix Volume Remote Sensing Handbook, Second Edition, is focused on the use of remote sensing technologies for studying water resources, including groundwater, floods, snow and ice, and wetlands. It discusses water productivity studies from Earth observation data characterization and modeling, mapping their successes and challenges. Chapters include remote sensing of surface water hydrology; quantitative geomorphology; river basin studies; floods; wetlands, including mangroves and river deltas; groundwater studies; crop water use or actual evapotranspiration modeling and mapping; and snow and ice mapping. This thoroughly revised and updated volume draws on the expertise of a diverse array of leading international authorities in remote sensing and provides an essential resource for researchers at all levels interested in using remote sensing. It integrates discussions of remote sensing principles, data, methods, development, applications, and scientific and social context. FEATURES Provides the most up-to-date comprehensive coverage of remote sensing science for water resources, including wetlands, floods, snow, and ice. Provides comprehensive assessments of crop water use and crop water productivity modeling and mapping, including evapotranspiration studies. Discusses and analyzes data from old and new generations of satellites and sensors spread across 60 years. Includes numerous case studies on advances and applications at local, regional, and global scales. Introduces advanced methods in remote sensing, such as machine learning, cloud computing, and artificial intelligence (AI). Highlights scientific achievements over the last decade and provides guidance for future developments. This volume is an excellent resource for the entire remote sensing and GIS community. Academics, researchers, undergraduate and graduate students, as well as practitioners, decision makers, and policymakers, will benefit from the expertise of the professionals featured in this book and their extensive knowledge of new and emerging trends.