The Transportation Research Board (TRB) and the Division on Earth and Life Studies (DELS) have released the pre-publication version of TRB Special Report 290, The Potential Impacts of Climate Change on U.S. Transportation, which explores the consequences of climate change for U.S. transportation infrastructure and operations. The report provides an overview of the scientific consensus on the current and future climate changes of particular relevance to U.S. transportation, including the limits of present scientific understanding as to their precise timing, magnitude, and geographic location; identifies potential impacts on U.S. transportation and adaptation options; and offers recommendations for both research and actions that can be taken to prepare for climate change. The book also summarizes previous work on strategies for reducing transportation-related emissions of carbon dioxide--the primary greenhouse gas--that contribute to climate change. Five commissioned papers used by the committee to help develop the report, a summary of the report, and a National Academies press release associated with the report are available online. DELS, like TRB, is a division of the National Academies, which include the National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council.
Expert guide to locating, surveying, excavating, identifying sunken vessels. Also detailed catalog of 4,000 wrecks arranged by year and locale. 73 illustrations. Bibliography.
Nature is fragile, environmentalists often tell us. But the lesson of this book is that it is not so. The truth is far more worrying. Nature is strong and packs a serious counterpunch . . . Global warming will very probably unleash unstoppable planetary forces. And they will not be gradual. The history of our planet's climate shows that it does not do gradual change. Under pressure, whether from sunspots or orbital wobbles or the depredations of humans, it lurches-virtually overnight. —from the Introduction Fred Pearce has been writing about climate change for eighteen years, and the more he learns, the worse things look. Where once scientists were concerned about gradual climate change, now more and more of them fear we will soon be dealing with abrupt change resulting from triggering hidden tipping points. Even President Bush's top climate modeler, Jim Hansen, warned in 2005 that "we are on the precipice of climate system tipping points beyond which there is no redemption." As Pearce began working on this book, normally cautious scientists beat a path to his door to tell him about their fears and their latest findings. With Speed and Violence tells the stories of these scientists and their work-from the implications of melting permafrost in Siberia and the huge river systems of meltwater beneath the icecaps of Greenland and Antarctica to the effects of the "ocean conveyor" and a rare molecule that runs virtually the entire cleanup system for the planet. Above all, the scientists told him what they're now learning about the speed and violence of past natural climate change-and what it portends for our future. With Speed and Violence is the most up-to-date and readable book yet about the growing evidence for global warming and the large climatic effects it may unleash.
Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.
Author: United States. Congress. House. Select Committee on U.S. National Security and Military/Commercial Concerns with the People's Republic of China
This book had its genesis in a symposium on gas hydrates presented at the 2003 Spring National Meeting of the American Institute of Chemical Engineers. The symposium consisted of twenty papers presented in four sessions over two days. Additional guest authors were invited to provide continuity and cover topics not addressed during the symposium. Gas hydrates are a unique class of chemical compounds where molecules of one compound (the guest material) are enclosed, without bonding chemically, within an open solid lattice composed of another compound (the host material). These types of configurations are known as clathrates. The guest molecules, u- ally gases, are of an appropriate size such that they fit within the cage formed by the host material. Commonexamples of gas hydrates are carbon dioxide/water and methane/water clathrates. At standard pressure and temperature, methane hydrate contains by volume 180 times as much methane as hydrate. The United States Geological Survey (USGS) has estimated that there is more organic carbon c- tained as methane hydrate than all other forms of fossil fuels combined. In fact, methane hydrates could provide a clean source of energy for several centuries. Clathrate compounds were first discovered in the early 1800s when Humphrey Davy and Michael Faraday were experimenting with chlorine-water mixtures.
This book studies the variety of organizational strategies selected to cope with critical uncertainties during crises. This research formulates and applies an institutional sense-making model to explain the selection of strategies for coping with uncertainties during crises to answer the question why some organizations select a rule-based strategy to cope with uncertainties, whereas others pursue a more ad hoc-based strategy. It finds that the level of institutionalization does not affect strategy selection in the initial phase of responding to crises; that three rigidity effects can be identified in the selection of sense-making strategies once organizations have faced the failure of their selected strategies; that discontinuities in the feedback loop of sense-making do not necessarily move organizations to switch their sense-making strategies, but interact with institutionalization to contribute to switching sense-making strategies. This book bridges the gap between institutional thinking and crisis management theorizing. A major step forward in the world of crisis management studies! ——Professor Arjen Boin, Leiden University, the Netherlands In a world of increasingly complex, sociotechnical systems interacting in high-risk environments, Professor Lu’s analysis of how organizations manage uncertainty is both timely and profound. ——Professor Louise K. Comfort, Director, Center for Disaster Management, University of Pittsburgh, USA Prof. Lu greatly enhances our understanding of how organizations cope with uncertainty and make sense of their challenges under the pressures of catastrophe. ——Dr. Arnold M. Howitt, Faculty Co-Director, Program on Crisis Leadership, Harvard Kennedy School, USA This book provides not only a theory of crisis management but also a key concept around which research and practice can be conducted. ——Professor Naim Kapucu, Director of School of Public Administration, University of Central Florida, USA A generic institutional model for analyzing and managing hazards, disasters and crises worldwide. ——Professor Joop Koppenjan, Erasmus University Rotterdam, the Netherlands This book has done an excellent job in opening the black box of how organizations make sense of the crisis situations they face and develop strategies to respond. It should be read by all of us who wish for a peaceful and safe world. ——Professor Lan Xue, Dean of School of Public Policy and Management, Tsinghua University, China