Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms

Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms

Author: Guang-Hong Yang

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 264

ISBN-13: 1439835233

DOWNLOAD EBOOK

More and more, the advanced technological systems of today rely on sophisticated control systems designed to assure greater levels of safe operation while optimizing performance. Rather than assuming always perfect conditions, these systems require adaptive approaches capable of coping with inevitable system component faults. Conventional feedback control designs do not offer that capability and can result in unsatisfactory performance or even instability, which is totally unacceptable in complex systems such as aircraft, spacecraft, and nuclear power plants where safety is a paramount concern. Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms presents recent research results that are advancing the field. It shows how adaptive mechanisms can be successfully introduced into the traditional reliable control/filtering, so that, based on the online estimation of eventual faults, the proposed adaptive reliable controller/filter parameters are updated automatically to compensate for any fault effects. Presenting a new method for fault-tolerant control (FTC) in the context of existing research, this uniquely cohesive volume, coauthored by two leading researchers — Focuses on the issues of reliable control/filtering in the framework of indirect adaptive method and LMI techniques Starts from the development and main research methods in FTC to offer a systematic presentation of new methods for adaptive reliable control/filtering of linear systems Explains the principles behind adaptive designs for closed-loop systems in normal operation as well as those that account for both actuator and sensor failures Presents rigorous mathematical analysis of control methods as well as easy-to-implement algorithms Includes practical case studies derived from the aerospace industry including simulation results for the F-16 The authors also extend the design idea from linear systems to linear time-delay systems via both memory and memory-less controllers. Moreover, some more recent results for the corresponding adaptive reliable control against actuator saturation are included. Ultimately, this remarkably practical resource, offers design approaches and guidelines that researchers can readily employ in the design of advanced FTC techniques offering improved reliability, maintainability, and survivability.


Fundamentals in Modeling and Control of Mobile Manipulators

Fundamentals in Modeling and Control of Mobile Manipulators

Author: Zhijun Li

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 292

ISBN-13: 1466580429

DOWNLOAD EBOOK

Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.


Real-Time Rendering

Real-Time Rendering

Author: Gabriyel Wong

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 214

ISBN-13: 1351831747

DOWNLOAD EBOOK

Consumers today expect extremely realistic imagery generated in real time for interactive applications such as computer games, virtual prototyping, and scientific visualisation. However, the increasing demands for fidelity coupled with rapid advances in hardware architecture pose a challenge: how do you find optimal, sustainable solutions to accommodate both speed of rendering and quality? Real-Time Rendering: Computer Graphics with Control Engineering presents a novel framework for solving the perennial challenge of resource allocation and the trade-off between quality and speed in interactive computer graphics rendering. Conventional approaches are mainly based on heuristics and algorithms, are largely application specific, and offer fluctuating performance, particularly as applications become more complex. The solution proposed by the authors draws on powerful concepts from control engineering to address these shortcomings. Expanding the horizon of real-time rendering techniques, this book: Explains how control systems work with real-time computer graphics Proposes a data-driven modelling approach that more accurately represents the system behaviour of the rendering process Develops a control system strategy for linear and non-linear models using proportional, integral, derivative (PID) and fuzzy control techniques Uses real-world data from rendering applications in proof-of-concept experiments Compares the proposed solution to existing techniques Provides practical details on implementation, including references to tools and source code This pioneering work takes a major step forward by applying control theory in the context of a computer graphics system. Promoting cross-disciplinary research, it offers guidance for anyone who wants to develop more advanced solutions for real-time computer graphics rendering.


Optimal Networked Control Systems with MATLAB

Optimal Networked Control Systems with MATLAB

Author: Jagannathan Sarangapani

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 351

ISBN-13: 1482235269

DOWNLOAD EBOOK

Optimal Networked Control Systems with MATLAB® discusses optimal controller design in discrete time for networked control systems (NCS). The authors apply several powerful modern control techniques in discrete time to the design of intelligent controllers for such NCS. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on NCS, networked imperfections, dynamical systems, stability theory, and stochastic optimal adaptive controllers in discrete time for linear and nonlinear systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for finite and infinite horizons. The text then: Introduces quantization effects for linear and nonlinear NCS, describing the design of stochastic adaptive controllers for a class of linear and nonlinear systems Presents two-player zero-sum game-theoretic formulation for linear systems in input–output form enclosed by a communication network Addresses the stochastic optimal control of nonlinear NCS by using neuro dynamic programming Explores stochastic optimal design for nonlinear two-player zero-sum games under communication constraints Treats an event-sampled distributed NCS to minimize transmission of state and control signals within the feedback loop via the communication network Covers distributed joint optimal network scheduling and control design for wireless NCS, as well as the effect of network protocols on the wireless NCS controller design An ideal reference for graduate students, university researchers, and practicing engineers, Optimal Networked Control Systems with MATLAB® instills a solid understanding of neural network controllers and how to build them.


Anti-Disturbance Control for Systems with Multiple Disturbances

Anti-Disturbance Control for Systems with Multiple Disturbances

Author: Lei Guo

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 311

ISBN-13: 1466587474

DOWNLOAD EBOOK

The main focus of this monograph will be on the Enhanced Anti-Disturbance Control and filtering theory and their applications. In fact, the classical anti-disturbance control theory only considered one "equivalent" disturbance which is merged by different unknown sources. However, it is noted that along with the development of information obtaining and processing technologies, one can get more information or knowledge about various types of disturbances.


Linear Control System Analysis and Design with MATLAB®, Sixth Edition

Linear Control System Analysis and Design with MATLAB®, Sixth Edition

Author: Constantine H. Houpis

Publisher: CRC Press

Published: 2013-10-30

Total Pages: 732

ISBN-13: 1466504269

DOWNLOAD EBOOK

Thoroughly classroom-tested and proven to be a valuable self-study companion, Linear Control System Analysis and Design: Sixth Edition provides an intensive overview of modern control theory and conventional control system design using in-depth explanations, diagrams, calculations, and tables. Keeping mathematics to a minimum, the book is designed with the undergraduate in mind, first building a foundation, then bridging the gap between control theory and its real-world application. Computer-aided design accuracy checks (CADAC) are used throughout the text to enhance computer literacy. Each CADAC uses fundamental concepts to ensure the viability of a computer solution. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB®, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.


Classical Feedback Control

Classical Feedback Control

Author: Boris Lurie

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 556

ISBN-13: 1439897468

DOWNLOAD EBOOK

This second edition textbook describes the design and implementation of high-performance feedback controllers for engineering systems. It emphasizes the frequency-domain design and methods based on Bode integrals, loop shaping, and nonlinear dynamic compensation. The authors include many problems and offer practical applications, illustrations, and


End-to-End Adaptive Congestion Control in TCP/IP Networks

End-to-End Adaptive Congestion Control in TCP/IP Networks

Author: Christos N. Houmkozlis

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 334

ISBN-13: 1351833502

DOWNLOAD EBOOK

Establishing adaptive control as an alternative framework to design and analyze Internet congestion controllers, End-to-End Adaptive Congestion Control in TCP/IP Networks employs a rigorously mathematical approach coupled with a lucid writing style to provide extensive background and introductory material on dynamic systems stability and neural network approximation; alongside future internet requests for congestion control architectures. Designed to operate under extreme heterogeneous, dynamic, and time-varying network conditions, the developed controllers must also handle network modeling structural uncertainties and uncontrolled traffic flows acting as external perturbations. The book also presents a parallel examination of specific adaptive congestion control, NNRC, using adaptive control and approximation theory, as well as extensions toward cooperation of NNRC with application QoS control. Features: Uses adaptive control techniques for congestion control in packet switching networks Employs a rigorously mathematical approach with lucid writing style Presents simulation experiments illustrating significant operational aspects of the method; including scalability, dynamic behavior, wireless networks, and fairness Applies to networked applications in the music industry, computers, image trading, and virtual groups by techniques such as peer-to-peer, file sharing, and internet telephony Contains working examples to highlight and clarify key attributes of the congestion control algorithms presented Drawing on the recent research efforts of the authors, the book offers numerous tables and figures to increase clarity and summarize the algorithms that implement various NNRC building blocks. Extensive simulations and comparison tests analyze its behavior and measure its performance through monitoring vital network quality metrics. Divided into three parts, the book offers a review of computer networks and congestion control, presents an adaptive congestion control framework as an alternative to optimization methods, and provides appendices related to dynamic systems through universal neural network approximators.


Modeling and Control for Micro/Nano Devices and Systems

Modeling and Control for Micro/Nano Devices and Systems

Author: Ning Xi

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 178

ISBN-13: 1351832182

DOWNLOAD EBOOK

Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.


Networked Control Systems with Intermittent Feedback

Networked Control Systems with Intermittent Feedback

Author: Domagoj Tolić

Publisher: CRC Press

Published: 2017-03-31

Total Pages: 226

ISBN-13: 1315350904

DOWNLOAD EBOOK

Networked Control Systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators and controllers is realized by a shared (wired or wireless) communication network. NCSs offer several advantages, such as reduced installation and maintenance costs, as well as greater flexibility, over conventional control systems in which parts of control loops exchange information via dedicated point-to-point connections. The principal goal of this book is to present a coherent and versatile framework applicable to various settings investigated by the authors over the last several years. This framework is applicable to nonlinear time-varying dynamic plants and controllers with delayed dynamics; a large class of static, dynamic, probabilistic and priority-oriented scheduling protocols; delayed, noisy, lossy and intermittent information exchange; decentralized control problems of heterogeneous agents with time-varying directed (not necessarily balanced) communication topologies; state- and output-feedback; off-line and on-line intermittent feedback; optimal intermittent feedback through Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL); and control systems with exogenous disturbances and modeling uncertainties.