Reliability of Analog Quantum Simulation

Reliability of Analog Quantum Simulation

Author:

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.


Detector Readout of an Analog Quantum Simulator

Detector Readout of an Analog Quantum Simulator

Author: Alessandro Luis Monteros

Publisher:

Published: 2021

Total Pages: 264

ISBN-13:

DOWNLOAD EBOOK

An important question in quantum simulation is the certication of the quantum simulators with proper readout. We examine how a detector's correlator changes when coupled to a quantum simulator using a diagrammatic technique. From the correlation functions calculated from the diagrammatic technique, we can determine whether or not reliable detection of the simulator's correlator can be achieved. When reliable detection is not possible due to detector back-action, we examine the situations when the back-action can be negligible. In particular, we study a cavity detector coupled to a Transverse Field Ising Model. We use a similar diagrammatic technique to study the interaction between a cavity and a qubit in the ultra strong coupling regime. This cavity-qubit system is of importance in quantum computing and is a fundamental model in cavity QED. Ultrastrong coupling strength enables novel approaches for quantum logic operations. Our approach provides a fresh perspective on calculating the transmission spectra and the imacpt of the ultrastrongly coupled cavity on the qubit behavior.


Analogue Quantum Simulation

Analogue Quantum Simulation

Author: Dominik Hangleiter

Publisher: Springer Nature

Published: 2022-01-21

Total Pages: 153

ISBN-13: 3030872165

DOWNLOAD EBOOK

This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.


Quantum Simulations with Ultracold Atoms: Beyond Standard Optical Lattices

Quantum Simulations with Ultracold Atoms: Beyond Standard Optical Lattices

Author: Philipp Hans-Jürgen Hauke

Publisher:

Published: 2013

Total Pages: 399

ISBN-13:

DOWNLOAD EBOOK

Many outstanding problems in quantum physics, such as high-Tc superconductivity or quark confinement, are still - after decades of research - awaiting commonly accepted explanations. One reason is that such systems are often difficult to control, show an intermingling of several effects, or are not easily accessible to measurement. To arrive at a deeper understanding of the physics at work, researchers typically derive simplified models designed to capture the most striking phenomena of the system under consideration. However, due to the exponential complexity of Hilbert space, even some of the simplest of such models pose formidable challenges to analytical and numerical calculations. In 1982, Feynman proposed to solve such quantum models with experimental simulation on a physically distinct, specifically engineered quantum system [Int. J. Theor.Phys. 21, 467]. Designed to be governed by the same underlying equations as the original model, it is hoped that direct measurements on these so called quantum simulators (QSs) will allow to gather deep insights into outstanding problems of physics and beyond. In this thesis, we identify four requirements that a useful QS has to fulfill, relevance, control, reliability, and efficiency. Focusing on these, we review the state of the art of two popular approaches, digital QSs (i.e., special purpose quantum computers) and analog QSs (devices with always-on interactions). Further, focusing on possibilities to increase control over QSs, we discuss a scheme to engineer quantum correlations between mesoscopic numbers of spinful particles in optical lattices. This technique, based on quantum polarization spectroscopy, may be useful for state preparation and quantum information protocols. Additionally, employing several analytical and numerical methods for the calculation of many-body ground states, we demonstrate the variety of condensed-matter problems that can be attacked with QSs consisting of ultracold ions or neutral atoms in optical lattices. The chosen examples, some of which have already been realized in experiment, include such diverse settings as frustrated antiferromagnetism, quantum phase transitions in exotic lattice geometries, topological insulators, non-Abelian gauge-fields, orbital order of ultracold Fermions, and systems with long-range interactions. The experimental realization of all of these models requires techniques which go beyond standard optical lattices, e.g., time-periodic driving of lattices with exotic geometry, loading ultracold atoms into higher bands, or immersing trapped ions into an optical lattice. The chosen models, motivated by important open questions of quantum physics, pose difficult problems for classical computers, but they may be amenable in the near future to quantum simulation with ultracold atoms or ions. While the experimental control over relevant models has increased dramatically in the last years, the reliability and efficiency of QSs has received considerably less attention. As a second important part of this thesis, we emphasize the need to consider these aspects under realistic experimental conditions. We discuss specific situations where terms that have typically been neglected in the description of the QS introduce systematic errors and even lead to novel physics. Further, we characterize in a generic example the influence of quenched disorder on an analog QS. Its performance for simulating universal behavior near a quantum phase transition seems satisfactory for low disorder. Moreover, our results suggest a connection between the reliability and efficiency of a QS: it works less reliable exactly in those interesting regimes where classical calculations are less efficient. If QSs fulfill all of our four requirements, they may revolutionize our approach to quantum-mechanical problems, allowing to solve the behavior of complex Hamiltonians, and to design nano-scale materials and chemical compounds from the ground up.


Quantum simulation experiments with superconducting circuits

Quantum simulation experiments with superconducting circuits

Author: Braumüller, Jochen

Publisher: KIT Scientific Publishing

Published: 2018-06-14

Total Pages: 166

ISBN-13: 3731507803

DOWNLOAD EBOOK

While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable experimental platform for the implementation of model Hamiltonians at a high degree of controllability.


Quantum Ising Phases and Transitions in Transverse Ising Models

Quantum Ising Phases and Transitions in Transverse Ising Models

Author: Sei Suzuki

Publisher: Springer

Published: 2012-12-14

Total Pages: 407

ISBN-13: 3642330398

DOWNLOAD EBOOK

Quantum phase transitions, driven by quantum fluctuations, exhibit intriguing features offering the possibility of potentially new applications, e.g. in quantum information sciences. Major advances have been made in both theoretical and experimental investigations of the nature and behavior of quantum phases and transitions in cooperatively interacting many-body quantum systems. For modeling purposes, most of the current innovative and successful research in this field has been obtained by either directly or indirectly using the insights provided by quantum (or transverse field) Ising models because of the separability of the cooperative interaction from the tunable transverse field or tunneling term in the relevant Hamiltonian. Also, a number of condensed matter systems can be modeled accurately in this approach, hence granting the possibility to compare advanced models with actual experimental results. This work introduces these quantum Ising models and analyses them both theoretically and numerically in great detail. With its tutorial approach the book addresses above all young researchers who wish to enter the field and are in search of a suitable and self-contained text, yet it will also serve as a valuable reference work for all active researchers in this area.


Quantum Computing

Quantum Computing

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-27

Total Pages: 273

ISBN-13: 030947969X

DOWNLOAD EBOOK

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.


Quantum Simulations with Photons and Polaritons

Quantum Simulations with Photons and Polaritons

Author: Dimitris G. Angelakis

Publisher: Springer

Published: 2017-05-03

Total Pages: 220

ISBN-13: 3319520253

DOWNLOAD EBOOK

This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.