Reliability Modeling in Industry 4.0

Reliability Modeling in Industry 4.0

Author: Mangey Ram

Publisher: Elsevier

Published: 2023-03-13

Total Pages: 548

ISBN-13: 0323996736

DOWNLOAD EBOOK

Reliability Modeling with Industry 4.0 explores the emerging theoretical and practical developments in reliability engineering in highly digitized industries, including power, computer systems, railway systems, and robotics. Drawing on leading research from around the globe, as well as the latest in industry practice, this book provides cutting edge advice on how to integrate a fully digitized industry 4.0 system for enhanced reliability and reduced maintenance cost. Technologies such as big data, artificial intelligence, and the industrial internet of things are addressed in the context of reliability engineering, providing practical advice on applications. - Provides innovative reliability modeling tools related to the application of Industry 4.0 technologies - Includes case studies from industries such as rail, energy, and computer systems - Describes techniques for the successful digital transformation of industries for sophisticated reliability systems


Stochastic Models in Reliability Engineering

Stochastic Models in Reliability Engineering

Author: Lirong Cui

Publisher: CRC Press

Published: 2020-09-01

Total Pages: 402

ISBN-13: 1000094618

DOWNLOAD EBOOK

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.


Probabilistic Physics of Failure Approach to Reliability

Probabilistic Physics of Failure Approach to Reliability

Author: Mohammad Modarres

Publisher: John Wiley & Sons

Published: 2017-06-23

Total Pages: 289

ISBN-13: 1119388686

DOWNLOAD EBOOK

The book presents highly technical approaches to the probabilistic physics of failure analysis and applications to accelerated life and degradation testing to reliability prediction and assessment. Beside reviewing a select set of important failure mechanisms, the book covers basic and advanced methods of performing accelerated life test and accelerated degradation tests and analyzing the test data. The book includes a large number of very useful examples to help readers understand complicated methods described. Finally, MATLAB, R and OpenBUGS computer scripts are provided and discussed to support complex computational probabilistic analyses introduced.


Site Reliability Engineering

Site Reliability Engineering

Author: Niall Richard Murphy

Publisher: "O'Reilly Media, Inc."

Published: 2016-03-23

Total Pages: 552

ISBN-13: 1491951176

DOWNLOAD EBOOK

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use


Optimization Models in Software Reliability

Optimization Models in Software Reliability

Author: Anu G. Aggarwal

Publisher: Springer Nature

Published: 2021-09-29

Total Pages: 373

ISBN-13: 3030789195

DOWNLOAD EBOOK

The book begins with an introduction to software reliability, models and techniques. The book is an informative book covering the strategies needed to assess software failure behaviour and its quality, as well as the application of optimization tools for major managerial decisions related to the software development process. It features a broad range of topics including software reliability assessment and apportionment, optimal allocation and selection decisions and upgradations problems. It moves through a variety of problems related to the evolving field of optimization of software reliability engineering, including software release time, resource allocating, budget planning and warranty models, which are each explored in depth in dedicated chapters. This book provides a comprehensive insight into present-day practices in software reliability engineering, making it relevant to students, researchers, academics and practising consultants and engineers.


Statistical Reliability Engineering

Statistical Reliability Engineering

Author: Hoang Pham

Publisher: Springer Nature

Published: 2021-08-13

Total Pages: 497

ISBN-13: 3030769046

DOWNLOAD EBOOK

This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.


Reliability and Availability Engineering

Reliability and Availability Engineering

Author: Kishor S. Trivedi

Publisher: Cambridge University Press

Published: 2017-08-03

Total Pages: 729

ISBN-13: 1107099501

DOWNLOAD EBOOK

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.


Reliability and Risk Modeling of Engineering Systems

Reliability and Risk Modeling of Engineering Systems

Author: Dilbagh Panchal

Publisher: Springer Nature

Published: 2021-05-21

Total Pages: 165

ISBN-13: 3030701514

DOWNLOAD EBOOK

This book addresses reliability, maintenance, risk, and safety issues of industrial systems with applications of the latest decision-making techniques. Thus, this book presents chapters that apply advanced tools, techniques, and computing models for optimizing the performance of industrial and manufacturing systems, along with other complex engineering equipment. Computing techniques like data analytics, failure mode and effects analysis, fuzzy set theory, petri-net, multi-criteria decision-making (MCDM), and soft computing are used for solving problems of reliability, risk, and safety related issues.


Engineering Asset Management

Engineering Asset Management

Author: Dimitris Kiritsis

Publisher: Springer Science & Business Media

Published: 2011-02-03

Total Pages: 997

ISBN-13: 0857293206

DOWNLOAD EBOOK

Engineering Asset Management discusses state-of-the-art trends and developments in the emerging field of engineering asset management as presented at the Fourth World Congress on Engineering Asset Management (WCEAM). It is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering such topics as asset condition monitoring and intelligent maintenance; asset data warehousing, data mining and fusion; asset performance and level-of-service models; design and life-cycle integrity of physical assets; deterioration and preservation models for assets; education and training in asset management; engineering standards in asset management; fault diagnosis and prognostics; financial analysis methods for physical assets; human dimensions in integrated asset management; information quality management; information systems and knowledge management; intelligent sensors and devices; maintenance strategies in asset management; optimisation decisions in asset management; risk management in asset management; strategic asset management; and sustainability in asset management.


Reliability, Maintainability and Risk

Reliability, Maintainability and Risk

Author: David J. Smith

Publisher: Elsevier

Published: 2011-06-29

Total Pages: 463

ISBN-13: 0080969038

DOWNLOAD EBOOK

Reliability, Maintainability and Risk: Practical Methods for Engineers, Eighth Edition, discusses tools and techniques for reliable and safe engineering, and for optimizing maintenance strategies. It emphasizes the importance of using reliability techniques to identify and eliminate potential failures early in the design cycle. The focus is on techniques known as RAMS (reliability, availability, maintainability, and safety-integrity). The book is organized into five parts. Part 1 on reliability parameters and costs traces the history of reliability and safety technology and presents a cost-effective approach to quality, reliability, and safety. Part 2 deals with the interpretation of failure rates, while Part 3 focuses on the prediction of reliability and risk. Part 4 discusses design and assurance techniques; review and testing techniques; reliability growth modeling; field data collection and feedback; predicting and demonstrating repair times; quantified reliability maintenance; and systematic failures. Part 5 deals with legal, management and safety issues, such as project management, product liability, and safety legislation. - 8th edition of this core reference for engineers who deal with the design or operation of any safety critical systems, processes or operations - Answers the question: how can a defect that costs less than $1000 dollars to identify at the process design stage be prevented from escalating to a $100,000 field defect, or a $1m+ catastrophe - Revised throughout, with new examples, and standards, including must have material on the new edition of global functional safety standard IEC 61508, which launches in 2010