T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.
Chromatin Signaling and Diseases covers the molecular mechanisms that regulate gene expression, which govern everything from embryonic development, growth, and human pathologies associated with aging, such as cancer. This book helps researchers learn about or keep up with the quickly expanding field of chromatin signaling. After reading this book, clinicians will be more capable of explaining the mechanisms of gene expression regulation to their patients to reassure them about new drug developments that target chromatin signaling mechanisms. For example, several epigenetic drugs that act on chromatin signaling factors are in clinical trials or even approved for usage in cancer treatments, Alzheimer's, and Huntington's diseases. Other epigenetic drugs are in development to regulate various class of chromatin signaling factors. To keep up with this changing landscape, clinicians and doctors will need to stay familiar with genetic advances that translate to clinical practice, such as chromatin signaling. Although sequencing of the human genome was completed over a decade ago and its structure investigated for nearly half a century, molecular mechanisms that regulate gene expression remain largely misunderstood. An emerging concept called chromatin signaling proposes that small protein domains recognize chemical modifications on the genome scaffolding histone proteins, facilitating the nucleation of enzymatic complexes at specific loci that then open up or shut down the access to genetic information, thereby regulating gene expression. The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases. Finally, the impact of gene expression defects associated with malfunctioning chromatin signaling is also explored. - Explains molecular mechanisms that regulate gene expression, which governs everything from embryonic development, growth, and human pathologies associated with aging - Educates clinicians and researchers about chromatin signaling, a molecular mechanism that is changing our understanding of human pathology - Explores the addition and removal of chemical modifications on histones, the proteins that specifically recognize these, and the impact of gene expression defects associated with malfunctioning chromatin signaling - Helps researchers learn about the quickly expanding field of chromatin signaling
T cells belong to a group of white blood cells called lymphocytes and play a large role in the immune response. An increased understanding of T cell immunity will provide new insights into the etiology of human autoimmune disease such as diabetes. This volume reviews the latest developments and discusses the evolution of T cell immunity, thymic requirements, and how to prevent T cell-dependent autoimmunity. - Discusses new discoveries, approaches, and ideas in T cell immunity - Contributions from leading scholars and industry experts - Reference guide for researchers involved in molecular biology and related fields
The vertebrate immune system defends the organism against invading pathogens while at the same time being self-tolerant to the body’s own constituents thus preserving its integrity. Multiple mechanisms work in concert to ensure self-tolerance. Apart from purging the T cell repertoire from auto-reactive T cells via negative selection in the thymus dominant tolerance exerted by regulatory T cells plays a major role in tolerance imposition and maintenance. Among the various regulatory/suppressive cells hitherto described, CD4+CD25+ regulatory T cells (Treg) and interleukin-10 producing T regulatory 1 (Tr1) cells have been studied in most detail and are the subject of most articles in this issue. Treg, also called "natural" regulatory T cells, will be traced from their intra-thymic origin to the site of their action in peripheral lymphoid organs and tissues. The repertoire of Treg is clearly biased towards recognition of self-antigens, thereby potentially preventing autoimmune diseases such as gastritis and oophoritis. Regulatory T cells, however also control infections, allergies and tolerance to transplanted tissues and this requires their induction in the periphery under conditions which are not yet fully understood. The concept of dominant tolerance, by far not novel, will offer new insights and hopefully tools for the successful treatment of autoimmune diseases, improved cancer immunotherapy and transplant survival. The fulfillment of these high expectations will, however, require their unambiguous identification and a better understanding of their mode of action.
Advances in biochemistry, cell biology, genome-wide mutagenesis - coupled with molecular technology, including gene microarray and transgenic and knock-out animals - have been instrumental in understanding the cellular processes and molecular pathways of self-tolerance and autoimmune diseases. The molecular definition of these pathways and processes has led to novel treatments for certain auto-immune diseases that are based on the pathogenesis of diseases rather than on broad-spectrum immunosuppression. This book reviews many of these current developments and proposes future novel approaches for understanding the pathogenesis of auto-immune diseases and designing novel therapy. This book covers three major areas of auto-immunity: the basic mechanisms of immunological tolerance, pathogenesis of auto-immune diseases, and some novel therapies. This book should be useful for immunologists, molecular biologists, rheumatologists, and clinical scientists.
Eosinophils in Health and Disease provides immunology researchers and students with a comprehensive overview of current thought and cutting-edge eosinophil research, providing chapters on basic science, disease-specific issues, therapeutics, models for study and areas of emerging importance.
Persistent Viral Infections Edited by Rafi Ahmed Emory Vaccine Center, Atlanta, USA and Irvin S. Y. Chen UCLA School of Medicine, Los Angeles, USA During the past decade much of our attention has focused on diseases associated with viral persistence. Major breakthroughs in immunology, and the advent of molecular approaches to study pathogenesis have increased our understanding of the complex virus-host interactions that occur during viral persistence. Persistent Viral Infections focuses on: * The pathogenesis and immunology of chronic infections * Animal models that provide, or have the potential to provide, major insights This volume will be essential reading for virologists, immunologists, oncologists and neurologists.
This book provides comprehensive information, both for clinicians and scientists, on the basic mechanisms, clinical features, and therapeutic approaches to epilepsy as an inflammatory disease. Inflammation has been for many years considered as an etiologic player (and a therapeutic target) for a specific group of epilepsies. However, it turns out that this concept underestimated the impact of inflammation in seizure disorders. Many accepted therapies for non-inflammatory epilepsies act in part as an inflammatory drug. The CNS actively responds to acute immune challenges by altering body temperature, stimulating the HPA axis, as well as up- and down-regulating specific sympathetic pathways.
Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for the future. This volume focuses on regulatory T-cells. Contributions from leading authorities and industry experts Informs and updates on all the latest developments in the field