A Novel Adapter Mechanism Regulates the Caulobacter Cell Cycle by Promoting the Degradation of the Transcriptional Regulator CtrA.

A Novel Adapter Mechanism Regulates the Caulobacter Cell Cycle by Promoting the Degradation of the Transcriptional Regulator CtrA.

Author: Stephen Carl Smith

Publisher:

Published: 2013

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

Caulobacter crescentus is a powerful model organism for understanding cellular differentiation, cell polarity and cell cycle regulation in bacteria. An elaborate network of two-component signaling proteins works to orchestrate the developmental program that characterizes the Caulobacter cell cycle. The essential DNA-binding response regulator CtrA is at the center of this regulatory scheme and acts to control the transcription of>100 genes that are required for cell cycle progression, motility, DNA methylation, morphology and other processes. Because CtrA also inhibits chromosome replication at specific stages of the Caulobacter cell cycle, its activity must be temporarily eliminated in order for DNA replication to occur. Inactivation of CtrA is achieved though dephosphorylation and regulated degradation by the broadly conserved energy-dependent protease ClpXP. In this dissertation, I analyze the roles of three proteins that are required for CtrA degradation in living cells. These are a single domain response regulator CpdR, a protein with no predicted function, RcdA, and a cyclic diguanylate (cdG)-binding protein, PopA. Structure-directed mutagenesis of RcdA was used to probe RcdA function. Results from these studies undermine the prevailing model for RcdA function, which suggest that RcdA does not participate directly in delivering CtrA to ClpXP, but instead acts simply as a localization factor increasing the concentration of CtrA at the cell pole where the protease is located. Additionally, I reconstituted the regulated proteolytic reaction in vitro and probed the role of all three accessory proteins and the small molecule cdG in promoting CtrA degradation. Although ClpXP alone is known to degrade CtrA in vitro, I observed a dramatic acceleration of proteolysis in the presence of the accessory proteins and cdG. This accelerated proteolysis was characterized by a nearly 10-fold reduction in the KM of the reaction, which is consistent with predictions for an adaptor mediated mechanism. I began to characterize protein-protein interactions within the proteolytic complex using in vivo and in vitro techniques. These experiments demonstrate that CtrA interacts directly with PopA in a cdG-dependent fashion. CtrA also interacts directly with RcdA and with ClpX. The CtrA-PopA(cdG) and CtrA-RcdA interactions are weakened or abolished by mutations in the receiver domain of CtrA that slow its proteolysis in vivo. We propose a mechanism in which CtrA forms a ternary complex with PopA and RcdA in response to rising cdG concentrations in the cell. In this complex, PopA and RcdA act as a multi-protein adaptor complex to enhance the delivery of CtrA to the catalytic pore of ClpX. CpdR is required for accelerated CtrA proteolysis, but its precise role is still unknown. The accessory proteins were able to stimulate CtrA degradation even in the presence of a DNA fragment containing a CtrA binding site, which is known to inhibit CtrA proteolysis. Future work will determine if the accessory factors prevent the formation of inhibitory CtrA-DNA complexes or actively disassemble them. This dissertation alters the concept of proteolytic adaptors to include multi-protein complexes and expands the range of mechanisms by which proteolytic adaptors are controlled to include direct regulation by the small molecule cdG.


Investigating Signaling Mechanisms in Caulobacter Crescentus

Investigating Signaling Mechanisms in Caulobacter Crescentus

Author: Elaine Benner Shapland

Publisher:

Published: 2011

Total Pages: 146

ISBN-13:

DOWNLOAD EBOOK

How bacteria control their shape and division was one of the first topics investigated with molecular biology, and many unanswered questions remain today. This dissertation research used the model organism Cualobacter crescentus to investigate how phospho-signaling controls asymmetric cell division, and how those signals are initiated and regulated. Most signaling in bacteria is achieved through two component systems (TCS), which are comprised of a histidine kinase and a response regulator. The downstream effects of response regulator activation have been well documented and can affect gene transcription, protein interactions or enzyme activity. However, very little is known about how histidine kinases are activated. Caulobacter uses TCS to control its asymmetric cell division and differentiation, but the events that initiate the cell cycle and the ability of an outside signal to impinge upon cell cycle progression remain unknown. Using three different methods, I have been able to shed light on signaling and cell cycle progression in Caulobacter crescentus. I have developed a tool to determine which proteins and conditions activate histidine kinases. I have shown that an outside environmental signal can feed into the TCS controlling cell cycle progression. I have also shown that a protein similar to a eukaryotic tyrosine phosphatase controls membrane integrity and morphology and is essential for viability in Caulobacter.


Regulation of Cell Fate Asymmetry in Caulobacter Crescentus by a Complex of Two Component Signaling Proteins

Regulation of Cell Fate Asymmetry in Caulobacter Crescentus by a Complex of Two Component Signaling Proteins

Author: Christos G. Tsokos

Publisher:

Published: 2011

Total Pages: 127

ISBN-13:

DOWNLOAD EBOOK

Cellular asymmetry is critical to the generation of complexity in both metazoans and many microbes. However, several molecular mechanisms responsible for translating asymmetry into differential cell fates remain unknown. Caulobacter crescentus provides an excellent model to study this process because every division is asymmetric. One daughter cell, the stalked cell, is sessile and commits immediately to S phase. The other daughter, the swarmer cell, is motile and locked in G1. Cellular differentiation requires asymmetric distribution or activation of regulatory factors. In Caulobacter, the master cell cycle regulator CtrA is selectively activated in swarmer cells, deactivated in stalked cells, and reactivated in predivisional cells. CtrA controls DNA replication, polar morphogenesis and cell division, and its cell-type and cell cycle-specific regulation is essential to the life cycle of Caulobacter. In swarmer cells, activated CtrA binds to the origin of replication and holds cells in G1. In stalked cells, CtrA deactivation allows for the initiation of DNA replication. Finally, in predivisional cells, CtrA is reactivated and acts as a transcription factor for>100 genes including those involved in polar morphogenesis and cell division. CtrA regulation is determined by the polarly localized histidine kinase CckA, but how CckA is differentially regulated in each cell type and why activity depends on localization are unknown. This thesis demonstrates that the unorthodox kinase DivL promotes CckA activity and that the phosphorylated regulator DivK inhibits CckA by binding to DivL. Differential cellular fates are achieved by regulating the phosphorylation state of DivK. In swarmer cells, DivK is dephosphorylated, thereby activating CckA and arresting the cells in G1. In stalked cells, phosphorylated DivK inactivates CckA, thus allowing for DNA replication initiation. Paradoxically, in predivisional cells, while phosphorylated DivK levels remain high, CckA is reactivated to initiate cellular division and morphogenesis. CckA activation in this cell type relies on polar localization with a DivK phosphatase. Localization thus creates a protected zone for CckA within the cell, without the use of membrane-enclosed compartments. These results reveal the mechanisms by which CckA is regulated in a cell-type-dependent manner. More generally, these findings reveal how cells exploit subcellular localization to orchestrate sophisticated regulation.


Prokaryotic Cytoskeletons

Prokaryotic Cytoskeletons

Author: Jan Löwe

Publisher: Springer

Published: 2017-05-11

Total Pages: 457

ISBN-13: 331953047X

DOWNLOAD EBOOK

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.