Lecture Notes On Regularity Theory For The Navier-stokes Equations

Lecture Notes On Regularity Theory For The Navier-stokes Equations

Author: Gregory Seregin

Publisher: World Scientific

Published: 2014-09-16

Total Pages: 269

ISBN-13: 9814623423

DOWNLOAD EBOOK

The lecture notes in this book are based on the TCC (Taught Course Centre for graduates) course given by the author in Trinity Terms of 2009-2011 at the Mathematical Institute of Oxford University. It contains more or less an elementary introduction to the mathematical theory of the Navier-Stokes equations as well as the modern regularity theory for them. The latter is developed by means of the classical PDE's theory in the style that is quite typical for St Petersburg's mathematical school of the Navier-Stokes equations.The global unique solvability (well-posedness) of initial boundary value problems for the Navier-Stokes equations is in fact one of the seven Millennium problems stated by the Clay Mathematical Institute in 2000. It has not been solved yet. However, a deep connection between regularity and well-posedness is known and can be used to attack the above challenging problem. This type of approach is not very well presented in the modern books on the mathematical theory of the Navier-Stokes equations. Together with introduction chapters, the lecture notes will be a self-contained account on the topic from the very basic stuff to the state-of-art in the field.


Mathematical Analysis of the Navier-Stokes Equations

Mathematical Analysis of the Navier-Stokes Equations

Author: Matthias Hieber

Publisher: Springer Nature

Published: 2020-04-28

Total Pages: 471

ISBN-13: 3030362264

DOWNLOAD EBOOK

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.


Navier–Stokes Equations

Navier–Stokes Equations

Author: Grzegorz Łukaszewicz

Publisher: Springer

Published: 2016-04-12

Total Pages: 395

ISBN-13: 331927760X

DOWNLOAD EBOOK

This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.


An Introduction to the Mathematical Theory of the Navier-Stokes Equations

An Introduction to the Mathematical Theory of the Navier-Stokes Equations

Author: Giovanni Galdi

Publisher: Springer Science & Business Media

Published: 2011-07-12

Total Pages: 1026

ISBN-13: 0387096205

DOWNLOAD EBOOK

The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier–Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: “The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)


An Introduction to the Mathematical Theory of the Navier-Stokes Equations

An Introduction to the Mathematical Theory of the Navier-Stokes Equations

Author: Giovanni Galdi

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 476

ISBN-13: 1475738668

DOWNLOAD EBOOK

Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de tailed analysis of the behavior for large times, and free-boundary problems, which are to be considered "advanced" ones. In this sense the present work should be regarded as "introductory" to the matter.