Intending these truncated proceedings of the May 2001 meeting to serve as a textbook rather than an ordinary proceedings volume, Gaune-Escard (Institut Universitaire des Systemes Thermiques Industriels, France) presents 16 papers topics of molten salts including electronic properties, light and neutron scattering, thermodynamic modeling, pyrochemistry in the nuclear industry, electrochemical techniques, and molten salt batteries. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).
This NATO Advanced Research Workshop was devoted to a specialized topic in molten salt chemistry and was held in an exotic location (as far as Westerners were concerned) well within the Arctic Circle. It nevertheless facilitated a fruitful week, both ofscience and ofhuman contacts. The 42 oral presentations and posters from nine countries enabled the 59 participants to learn a great deal about many areas of recent research in the molten salt chemistry of refractory metals, while making new contacts as well as renewing old friendships. The time ofinformal contact ledto the beginningofa numberofnew research cooperations with interchangeofpersonnel. Thus the twin aimsofadvancing science and improving East-West understanding were both amply fulfilled. Indeed a warm and happy family atmosphere was very tangible doth during the scientific sessions and the social events, which participants, accompanying persons and local staffall enjoyed. This opportunity of living for a short time within the Arctic Circle was a novelty for most Westerners, who generally appreciated the very warm weather (the hottest for 20 years according to some residents), as well as the beautiful surroundings ofvery green birch/pine forest, rushing rivers,vast lakes and rounded mountains,frequently illuminated by wonderful sunsets. The evening barbeque beside Lake Imandra (100 km long) and the coach tour beside the beautiful White Sea dotted with islands in the Kandalaksha Recreational Area (National Park), to sample Pomor culture, dancing and fresh salmon soup, were high spots ofthe social programme.
This symposium was dedicated to the significant and ground breaking accomplishments of Robert A. Osteryoung in the area of molten salts and ionic liquids. This symposium provided an international and interdisciplinary forum centered on innovative basic and applied research performed in molten salts and ionic liquids. Contributed papers were solicited in all areas of biology, chemistry, electrochemistry, electrochemical engineering, and physics related to molten salt research.
Molten salts and fused media provide the key properties and the theory of molten salts, as well as aspects of fused salts chemistry, helping you generate new ideas and applications for fused salts. Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion. This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining.
Molten salts are of considerable significance to chemical technology. Applications range from the established ones, such as the production of aluminum, magnesium, sodium and fluorine, to those as yet to be fully exploited, such as molten salt batteries and fuel cells, catalysis, and solar energy. Molten salts are investigated for different purposes by many diverse techniques. There is a need to keep investigators working in different areas, such as metal production, power sources, and glass industry, aware of progress in various specialties, as well as to familiarize new research workers with the fundamental aspects of the broad field of molten salt _ chemistry. This volume constitutes the plenary lectures presented at the NATO Advanced Study Institute on Molten Salt Chemistry, Camerino, Italy, August 3-15, 1986. The fundamentals and several selected applications of molten salt chemistry were addressed. The major fundamental topics covered at this ASI were the structure of melts, thermodynamics of molten salt mixtures, theoretical and experimental studies of transport processes, metal-metal salt solutions, solvent properties of melt systems, acid-base effects in molten salt chemistry, electronic absorption, vibrational, and nuclear magnetic resonance spectroscopy of melt systems, electrochemistry and electroanalytical chemistry in molten salts, and organic chemistry in molten salts. The applied aspects of molten salt chemistry included the chemistry of aluminum production, electrodeposition using molten salts, and molten salt batteries and fuel cells.
Extractive Metallurgy of Molybdenum provides an up-to-date, comprehensive account of the extraction and process metallurgy fields of molybdenum. The book covers the history of metallurgy of molybdenum from its beginnings to the present day. Topics discussed include molybdenum properties and applications, pyrometallurgy of molybdenum, hydrometallurgy of molybdenum, electrometallurgy of molybdenum, and a survey of molybdenum resources and processing. The book will be a useful reference for metallurgists, materials scientists, researchers, and students. It will also be an indispensable guide for world producers, processors, and traders of molybdenum.